Li He, Muhammad Ahmad, Shang Wu, Shengyao Luo, Wenjia Shi, Xuan Guo, Yuansheng Cao, Norbert Perrimon
{"title":"Dietary Amino Acids Promote Glucagon-like Hormone Release to Generate Novel Calcium Waves in Adipose Tissues.","authors":"Li He, Muhammad Ahmad, Shang Wu, Shengyao Luo, Wenjia Shi, Xuan Guo, Yuansheng Cao, Norbert Perrimon","doi":"10.21203/rs.3.rs-4493132/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related morbidities. Among different metabolic regulatory signals, cytosolic Ca<sup>2+</sup> plays pivotal roles in metabolic regulation, including glycolysis, gluconeogenesis, and lipolysis. Recently, intercellular calcium waves (ICWs), the propagation of Ca<sup>2+</sup> signaling through tissues, have been found in different systems to coordinate multicellular responses. Nevertheless, our understanding of how ICWs are modulated and operate within living organisms remains limited. In this study, we explore the real-time dynamics, both in organ culture and free-behaving animals, of ICWs in <i>Drosophila</i> larval and adult adipose tissues. We identified Adipokinetic hormone (AKH), the fly functional homolog of mammalian glucagon, as the key factor driving Ca<sup>2+</sup> activities in adipose tissue. Interestingly, we found that AKH, which is released in a pulsatile manner into the circulating hemolymph from the AKH-producing neurosecretory cells (APCs) in the brain, stimulates ICWs in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent random ICWs are triggered by a presumably uniformly diffused AKH. This highlights the stage-specific interplay of hormone secretion, extracellular diffusion, and intercellular communication in the regulation of Ca<sup>2+</sup> dynamics. Additionally, we discovered that specific dietary amino acids activate the APCs, leading to increased intracellular Ca<sup>2+</sup> and subsequent AKH secretion. Altogether, our findings identify that dietary amino acids regulate the release of AKH peptides from the APCs, which subsequently stimulates novel gap-junction-independent ICWs in adipose tissues, thereby enhancing lipid metabolism.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4493132/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related morbidities. Among different metabolic regulatory signals, cytosolic Ca2+ plays pivotal roles in metabolic regulation, including glycolysis, gluconeogenesis, and lipolysis. Recently, intercellular calcium waves (ICWs), the propagation of Ca2+ signaling through tissues, have been found in different systems to coordinate multicellular responses. Nevertheless, our understanding of how ICWs are modulated and operate within living organisms remains limited. In this study, we explore the real-time dynamics, both in organ culture and free-behaving animals, of ICWs in Drosophila larval and adult adipose tissues. We identified Adipokinetic hormone (AKH), the fly functional homolog of mammalian glucagon, as the key factor driving Ca2+ activities in adipose tissue. Interestingly, we found that AKH, which is released in a pulsatile manner into the circulating hemolymph from the AKH-producing neurosecretory cells (APCs) in the brain, stimulates ICWs in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent random ICWs are triggered by a presumably uniformly diffused AKH. This highlights the stage-specific interplay of hormone secretion, extracellular diffusion, and intercellular communication in the regulation of Ca2+ dynamics. Additionally, we discovered that specific dietary amino acids activate the APCs, leading to increased intracellular Ca2+ and subsequent AKH secretion. Altogether, our findings identify that dietary amino acids regulate the release of AKH peptides from the APCs, which subsequently stimulates novel gap-junction-independent ICWs in adipose tissues, thereby enhancing lipid metabolism.