A prognostic matrix gene expression signature defines functional glioblastoma phenotypes and niches.

Monika Vishnoi, Zeynep Dereli, Zheng Yin, Elisabeth K Kong, Meric Kinali, Kisan Thapa, Ozgun Babur, Kyuson Yun, Nourhan Abdelfattah, Xubin Li, Behnaz Bozorgui, Mary C Farach-Carson, Robert C Rostomily, Anil Korkut
{"title":"A prognostic matrix gene expression signature defines functional glioblastoma phenotypes and niches.","authors":"Monika Vishnoi, Zeynep Dereli, Zheng Yin, Elisabeth K Kong, Meric Kinali, Kisan Thapa, Ozgun Babur, Kyuson Yun, Nourhan Abdelfattah, Xubin Li, Behnaz Bozorgui, Mary C Farach-Carson, Robert C Rostomily, Anil Korkut","doi":"10.21203/rs.3.rs-4541464/v1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interactions among tumor, immune, and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood.</p><p><strong>Methods: </strong>Here, through computational genomics and proteomics approaches, we analyzed the functional and clinical relevance of CMP expression in GBM at bulk, single cell, and spatial anatomical resolution.</p><p><strong>Results: </strong>We identified genes encoding CMPs whose expression levels categorize GBM tumors into CMP expression-high (M-H) and CMP expression-low (M-L) groups. CMP enrichment is associated with worse patient survival, specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells, and immune checkpoint gene expression. Anatomical and single-cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative niches that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene CMP expression signature, termed Matrisome 17 (M17) signature that further refines the prognostic value of CMP genes. The M17 signature is a significantly stronger prognostic factor compared to <i>MGMT</i> promoter methylation status as well as canonical subtypes, and importantly, potentially predicts responses to PD1 blockade.</p><p><strong>Conclusion: </strong>The matrisome gene expression signature provides a robust stratification of GBM patients by survival and potential biomarkers of functionally relevant GBM niches that can mediate mesenchymal-immune cross talk. Patient stratification based on matrisome profiles can contribute to selection and optimization of treatment strategies.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213219/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4541464/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Interactions among tumor, immune, and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood.

Methods: Here, through computational genomics and proteomics approaches, we analyzed the functional and clinical relevance of CMP expression in GBM at bulk, single cell, and spatial anatomical resolution.

Results: We identified genes encoding CMPs whose expression levels categorize GBM tumors into CMP expression-high (M-H) and CMP expression-low (M-L) groups. CMP enrichment is associated with worse patient survival, specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells, and immune checkpoint gene expression. Anatomical and single-cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative niches that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene CMP expression signature, termed Matrisome 17 (M17) signature that further refines the prognostic value of CMP genes. The M17 signature is a significantly stronger prognostic factor compared to MGMT promoter methylation status as well as canonical subtypes, and importantly, potentially predicts responses to PD1 blockade.

Conclusion: The matrisome gene expression signature provides a robust stratification of GBM patients by survival and potential biomarkers of functionally relevant GBM niches that can mediate mesenchymal-immune cross talk. Patient stratification based on matrisome profiles can contribute to selection and optimization of treatment strategies.

预后基质基因表达特征定义了功能性胶质母细胞瘤表型和壁龛。
背景 .肿瘤、免疫和血管壁龛之间的相互作用在驱动胶质母细胞瘤(GBM)恶性程度和治疗反应方面发挥着重要作用。然而,人们对介导这种相互作用的细胞外基质蛋白(CMPs)的组成、异质性和定位还不甚了解。方法 .在这里,我们通过计算基因组学和蛋白质组学方法,以大体、单细胞和空间解剖学分辨率分析了 CMP 在 GBM 中表达的功能和临床相关性。结果 .我们确定了编码 CMPs 的基因,其表达水平将 GBM 肿瘤分为 CMP 表达高(M-H)组和 CMP 表达低(M-L)组。CMP的富集与患者生存率下降、特定的驱动致癌基因改变、间质状态、促瘤免疫细胞浸润和免疫检查点基因表达有关。解剖学和单细胞转录组分析表明,matrisome基因表达富集于血管和前缘/浸润龛中,已知这些龛中藏有驱动GBM进展的胶质瘤干细胞。最后,我们确定了17个基因的CMP表达特征,称为 "矩阵组17(M17)特征",进一步完善了CMP基因的预后价值。与 MGMT 启动子甲基化状态和经典亚型相比,M17 特征是一个明显更强的预后因素,而且重要的是,它有可能预测对 PD1 阻断剂的反应。结论 .matrisome基因表达特征为GBM患者的生存提供了一个稳健的分层,也为GBM功能相关壁龛提供了潜在的生物标记物,这些壁龛可以介导间质-免疫交叉对话。基于 matrisome 图谱的患者分层有助于选择和优化治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信