Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges.

Stem cells and development Pub Date : 2024-09-01 Epub Date: 2024-08-07 DOI:10.1089/scd.2024.0035
Peng Zeng, Lin-Zhen Shu, Yu-Hong Zhou, Hai-Lin Huang, Shu-Hua Wei, Wen-Jian Liu, Huan Deng
{"title":"Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges.","authors":"Peng Zeng, Lin-Zhen Shu, Yu-Hong Zhou, Hai-Lin Huang, Shu-Hua Wei, Wen-Jian Liu, Huan Deng","doi":"10.1089/scd.2024.0035","DOIUrl":null,"url":null,"abstract":"<p><p>The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2024.0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.

干细胞分裂及其在乳腺发育和肿瘤发生中的关键作用:当前的进展和依然存在的挑战。
乳腺癌(BC)的起源历来是医学研究的重点。人们普遍认为,乳腺癌起源于永生的乳腺干细胞(MaSCs),这些干细胞参与两种分裂模式:对称细胞分裂(SCD)和非对称细胞分裂(ACD)。虽然这两种模式都是乳腺发育过程中的关键,而且它们的失衡与乳腺癌的发病密切相关,但这些现象背后的分子机制值得深入探讨。在这篇综述中,我们首先概述了ACD/SCD的分子机制,并分析了ACD/SCD在乳腺发育各个阶段的作用。我们描述了端粒酶活性的变化、极性蛋白的作用以及卵巢激素的刺激随后会导致两种不同的后果:乳腺发育或癌变。最后,基因突变、极性蛋白的异常、信号转导通路的调节以及微环境的改变会破坏乳腺癌干细胞(BCSCs)分裂模式的平衡,导致乳腺癌。重要的调控因子,如哺乳动物可抑制分裂因子(mInsc)、Numb、Eya1、PKCα、PKCθ、p53和IL-6等,也在ACD/SCD的调控途径中发挥重要作用,可能成为未来干细胞分裂、乳腺发育和肿瘤治疗研究的关键靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信