Modeling the Thermoelastic Sample Response for Subdiffraction Infrared Spectroscopic Imaging

Seth Kenkel,  and , Rohit Bhargava*, 
{"title":"Modeling the Thermoelastic Sample Response for Subdiffraction Infrared Spectroscopic Imaging","authors":"Seth Kenkel,&nbsp; and ,&nbsp;Rohit Bhargava*,&nbsp;","doi":"10.1021/cbmi.4c00018","DOIUrl":null,"url":null,"abstract":"<p >There is significant and increasing interest in using the photothermal effect to record infrared (IR) absorption spectra localized to volumes that are considerably smaller than the wavelength of excitation, i.e., subdiffraction imaging. As opposed to conventional IR microscopy, in which absorption and scattering of the illuminating light is measured, subdiffraction imaging can be achieved through detection of the sample’s thermal response to IR absorption-induced heating. While this relationship has been examined by a variety of coarse-grained models, a generalized analysis of the dependence of temperature and surface deformation arising from an absorber below the surface has not been reported. Here, we present an analytical model to understand a sample’s thermoelastic response in photothermal measurements. The model shows important dependence of the ability to record subdiffraction data on modulation frequency of exciting light, limitations imposed by optical sensing, and the potential to discern location of objects ultimately limited by noise and sharpness of the detecting mechanism. This foundational analysis should allow for better modeling, understanding, and harnessing of the relationship between absorption and sample response that underlies IR photothermal measurements.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 6","pages":"413–421"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is significant and increasing interest in using the photothermal effect to record infrared (IR) absorption spectra localized to volumes that are considerably smaller than the wavelength of excitation, i.e., subdiffraction imaging. As opposed to conventional IR microscopy, in which absorption and scattering of the illuminating light is measured, subdiffraction imaging can be achieved through detection of the sample’s thermal response to IR absorption-induced heating. While this relationship has been examined by a variety of coarse-grained models, a generalized analysis of the dependence of temperature and surface deformation arising from an absorber below the surface has not been reported. Here, we present an analytical model to understand a sample’s thermoelastic response in photothermal measurements. The model shows important dependence of the ability to record subdiffraction data on modulation frequency of exciting light, limitations imposed by optical sensing, and the potential to discern location of objects ultimately limited by noise and sharpness of the detecting mechanism. This foundational analysis should allow for better modeling, understanding, and harnessing of the relationship between absorption and sample response that underlies IR photothermal measurements.

Abstract Image

为亚衍射红外光谱成像建立热弹性样品响应模型
人们对利用光热效应记录局部体积比激发波长小得多的红外线(IR)吸收光谱(即亚衍射成像)越来越感兴趣。与传统的红外显微镜测量照明光的吸收和散射不同,亚衍射成像可以通过检测样品对红外吸收引起的加热的热反应来实现。虽然各种粗粒度模型已对这种关系进行了研究,但对表面以下吸收体产生的温度和表面变形的依赖关系的概括性分析尚未见报道。在此,我们提出了一个分析模型,用于理解光热测量中样品的热弹性响应。该模型显示了记录亚衍射数据的能力与激发光调制频率的重要关系、光学传感所带来的限制,以及识别物体位置的潜力最终受限于噪声和检测机制的清晰度。这项基础性分析将有助于更好地建模、理解和利用吸收与样品响应之间的关系,而这种关系正是红外光热测量的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信