{"title":"Early changes in asporin levels in osteoarthritis of the temporomandibular joint","authors":"","doi":"10.1016/j.job.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>The present study aimed to elucidate the pathogenesis of temporomandibular joint (TMJ) osteoarthritis (TMJ-OA) in a mouse model. We investigated morphological and histological changes in the head of mandible cartilage and early immunohistochemical (IHC) changes in transforming growth factor (TGF)-β, phosphorylated Smad-2/3 (p-Smad2/3), a TGF-β signaling molecule, and asporin.</p></div><div><h3>Methods</h3><p>TMJ-OA was induced in a mouse model through unilateral partial discectomy. Micro-computed tomography (micro-CT) and safranin-O staining were performed to morphologically and histologically evaluate the degeneration of the head of mandible caused by TMJ-OA. IHC staining for TGF-β, p-Smad2/3, and asporin was performed to evaluate the changes in protein expression.</p></div><div><h3>Results</h3><p>In the experimental group, three-dimensional (3D) morphometry revealed an enlarged head of mandible and safranin-O staining showed degeneration of cartilage tissue in the early stages of TMJ-OA compared to the control group. IHC staining revealed that TGF-β, p-Smad2/3, and asporin expression increased in the head of mandible cartilage before the degeneration of cartilage tissue, and subsequently decreased for a short period.</p></div><div><h3>Conclusion</h3><p>The findings suggested a negative feedback relationship between the expression of asporin and the TGF-β/Smad transduction pathway, which may be involved in the degeneration of the head of mandible in the early stages of TMJ-OA. Asporin is a potential biomarker of the early stages of TMJ-OA, which ultimately leads to the irreversible degeneration of TMJ tissues.</p></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"66 3","pages":"Pages 546-553"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1349007924001464/pdfft?md5=17cf7a2735f5fc0fcfde04629b66e852&pid=1-s2.0-S1349007924001464-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007924001464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
The present study aimed to elucidate the pathogenesis of temporomandibular joint (TMJ) osteoarthritis (TMJ-OA) in a mouse model. We investigated morphological and histological changes in the head of mandible cartilage and early immunohistochemical (IHC) changes in transforming growth factor (TGF)-β, phosphorylated Smad-2/3 (p-Smad2/3), a TGF-β signaling molecule, and asporin.
Methods
TMJ-OA was induced in a mouse model through unilateral partial discectomy. Micro-computed tomography (micro-CT) and safranin-O staining were performed to morphologically and histologically evaluate the degeneration of the head of mandible caused by TMJ-OA. IHC staining for TGF-β, p-Smad2/3, and asporin was performed to evaluate the changes in protein expression.
Results
In the experimental group, three-dimensional (3D) morphometry revealed an enlarged head of mandible and safranin-O staining showed degeneration of cartilage tissue in the early stages of TMJ-OA compared to the control group. IHC staining revealed that TGF-β, p-Smad2/3, and asporin expression increased in the head of mandible cartilage before the degeneration of cartilage tissue, and subsequently decreased for a short period.
Conclusion
The findings suggested a negative feedback relationship between the expression of asporin and the TGF-β/Smad transduction pathway, which may be involved in the degeneration of the head of mandible in the early stages of TMJ-OA. Asporin is a potential biomarker of the early stages of TMJ-OA, which ultimately leads to the irreversible degeneration of TMJ tissues.