Engineered Tissues: A Bright Perspective in Urethral Obstruction Regeneration.

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Tissue Engineering. Part B, Reviews Pub Date : 2025-06-01 Epub Date: 2024-07-29 DOI:10.1089/ten.TEB.2024.0124
Mina Habibizadeh, Parvin Mohammadi, Roshanak Amirian, Mohammadmehdi Moradi, Mahmoudreza Moradi
{"title":"Engineered Tissues: A Bright Perspective in Urethral Obstruction Regeneration.","authors":"Mina Habibizadeh, Parvin Mohammadi, Roshanak Amirian, Mohammadmehdi Moradi, Mahmoudreza Moradi","doi":"10.1089/ten.TEB.2024.0124","DOIUrl":null,"url":null,"abstract":"<p><p>The urethral reconstruction using tissue engineering is a promising approach in clinical and preclinical studies in recent years. Generally, regenerative medicine comprises cells, bioactive agents, and biomaterial scaffolds to reconstruct tissue. For the restoration of extended urethral injury are incorporated autologous grafts or flaps from the skin of the genital area, and buccal mucosa are also utilized. However, biomaterial grafts with cells or growth factors are investigated to enhance these grafts. Natural and synthetic biomaterials were investigated for preclinical studies in the form of decellularization tissues, nanofiber/microfiber, film, and foam grafts that determined safety and efficiency. In this regard, skin grafts, bladder epithelium, buccal mucosa, small intestinal submucosa, tissue-engineered buccal mucosa, and polymeric nanofibers in clinical trials were examined, and promising and diverse outcomes were acquired. Even though one of the challenges of the reconstruction of the urethra is resistance to urine pressure and its ability to be sutured, it could be solved by the proper adjustment of the physicochemical characteristics of the graft. Urethral engineering faces challenges due to necrosis caused by a lack of angiogenesis and fibrosis, which require further investigation in future studies.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"209-220"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2024.0124","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The urethral reconstruction using tissue engineering is a promising approach in clinical and preclinical studies in recent years. Generally, regenerative medicine comprises cells, bioactive agents, and biomaterial scaffolds to reconstruct tissue. For the restoration of extended urethral injury are incorporated autologous grafts or flaps from the skin of the genital area, and buccal mucosa are also utilized. However, biomaterial grafts with cells or growth factors are investigated to enhance these grafts. Natural and synthetic biomaterials were investigated for preclinical studies in the form of decellularization tissues, nanofiber/microfiber, film, and foam grafts that determined safety and efficiency. In this regard, skin grafts, bladder epithelium, buccal mucosa, small intestinal submucosa, tissue-engineered buccal mucosa, and polymeric nanofibers in clinical trials were examined, and promising and diverse outcomes were acquired. Even though one of the challenges of the reconstruction of the urethra is resistance to urine pressure and its ability to be sutured, it could be solved by the proper adjustment of the physicochemical characteristics of the graft. Urethral engineering faces challenges due to necrosis caused by a lack of angiogenesis and fibrosis, which require further investigation in future studies.

工程组织:尿道阻塞再生的光明前景
近年来,在临床和临床前研究中,利用组织工程重建尿道是一种很有前景的方法。一般来说,再生医学包括细胞、生物活性剂和生物材料支架来重建组织。在修复扩大的尿道损伤时,采用了来自生殖器部位皮肤和口腔粘膜的自体移植物或皮瓣。不过,为了增强这些移植物的效果,研究人员对含有细胞或生长因子的生物材料移植物进行了调查,并对脱细胞组织、纳米纤维/微纤维、薄膜和泡沫移植物等形式的天然和合成生物材料进行了临床前研究,以确定其安全性和有效性。在这方面,对临床试验中的皮肤移植物、膀胱上皮、口腔粘膜、小肠粘膜下层、组织工程化口腔粘膜和聚合物纳米纤维进行了研究,并取得了令人鼓舞的各种成果。尽管如此,尿道重建的挑战之一是尿道的抗压性和缝合能力,这可以通过适当调整移植物的理化特性来解决。由于缺乏血管生成和纤维化导致的坏死,尿道工程面临着挑战,这需要在今后的研究中进一步探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信