Joel Gruchot, Laura Reiche, Luisa Werner, Felisa Herrero, Jessica Schira-Heinen, Urs Meyer, Patrick Küry
{"title":"Molecular dissection of HERV-W dependent microglial- and astroglial cell polarization.","authors":"Joel Gruchot, Laura Reiche, Luisa Werner, Felisa Herrero, Jessica Schira-Heinen, Urs Meyer, Patrick Küry","doi":"10.1016/j.micinf.2024.105382","DOIUrl":null,"url":null,"abstract":"<p><p>The endogenous retrovirus type W (HERV-W) is a human-specific entity, which was initially discovered in multiple sclerosis (MS) patient derived cells. We initially found that the HERV-W envelope (ENV) protein negatively affects oligodendrogenesis and controls microglial cell polarization towards a myelinated axon associated and damaging phenotype. Such first functional assessments were conducted ex vivo, given the human-specific origin of HERV-W. Recent experimental evidence gathered on a novel transgenic mouse model, mimicking activation and expression of the HERV-W ENV protein, revealed that all glial cell types are impacted and that cellular fates, differentiation, and functions were changed. In order to identify HERV-W-specific signatures in glial cells, the current study analyzed the transcriptome of ENV protein stimulated microglial- and astroglial cells and compared the transcriptomic signatures to lipopolysaccharide (LPS) stimulated cells, owing to the fact that both ligands can activate toll-like receptor-4 (TLR-4). Additionally, a comparison between published disease associated glial signatures and the transcriptome of HERV-W ENV stimulated glial cells was conducted. We, therefore, provide here for the first time a detailed molecular description of specific HERV-W ENV evoked effects on those glial cell populations that are involved in smoldering neuroinflammatory processes relevant for progression of neurodegenerative diseases.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2024.105382","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The endogenous retrovirus type W (HERV-W) is a human-specific entity, which was initially discovered in multiple sclerosis (MS) patient derived cells. We initially found that the HERV-W envelope (ENV) protein negatively affects oligodendrogenesis and controls microglial cell polarization towards a myelinated axon associated and damaging phenotype. Such first functional assessments were conducted ex vivo, given the human-specific origin of HERV-W. Recent experimental evidence gathered on a novel transgenic mouse model, mimicking activation and expression of the HERV-W ENV protein, revealed that all glial cell types are impacted and that cellular fates, differentiation, and functions were changed. In order to identify HERV-W-specific signatures in glial cells, the current study analyzed the transcriptome of ENV protein stimulated microglial- and astroglial cells and compared the transcriptomic signatures to lipopolysaccharide (LPS) stimulated cells, owing to the fact that both ligands can activate toll-like receptor-4 (TLR-4). Additionally, a comparison between published disease associated glial signatures and the transcriptome of HERV-W ENV stimulated glial cells was conducted. We, therefore, provide here for the first time a detailed molecular description of specific HERV-W ENV evoked effects on those glial cell populations that are involved in smoldering neuroinflammatory processes relevant for progression of neurodegenerative diseases.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.