Alyssa M. Worland , Zhenlin Han , Jessica Maruwan , Yu Wang , Zhi-Yan Du , Yinjie J. Tang , Wei Wen Su , Garrett W. Roell
{"title":"Elucidation of triacylglycerol catabolism in Yarrowia lipolytica: How cells balance acetyl-CoA and excess reducing equivalents","authors":"Alyssa M. Worland , Zhenlin Han , Jessica Maruwan , Yu Wang , Zhi-Yan Du , Yinjie J. Tang , Wei Wen Su , Garrett W. Roell","doi":"10.1016/j.ymben.2024.06.010","DOIUrl":null,"url":null,"abstract":"<div><p><em>Yarrowia lipolytica</em> is an industrial yeast that can convert waste oil to value-added products. However, it is unclear how this yeast metabolizes lipid feedstocks, specifically triacylglycerol (TAG) substrates. This study used <sup>13</sup>C-metabolic flux analysis (<sup>13</sup>C-MFA), genome-scale modeling, and transcriptomics analyses to investigate <em>Y. lipolytica</em> W29 growth with oleic acid, glycerol, and glucose. Transcriptomics data were used to guide <sup>13</sup>C-MFA model construction and to validate the <sup>13</sup>C-MFA results. The <sup>13</sup>C-MFA data were then used to constrain a genome-scale model (GSM), which predicted <em>Y. lipolytica</em> fluxes, cofactor balance, and theoretical yields of terpene products. The three data sources provided new insights into cellular regulation during catabolism of glycerol and fatty acid components of TAG substrates, and how their consumption routes differ from glucose catabolism. We found that (1) over 80% of acetyl-CoA from oleic acid is processed through the glyoxylate shunt, a pathway that generates less CO<sub>2</sub> compared to the TCA cycle, (2) the carnitine shuttle is a key regulator of the cytosolic acetyl-CoA pool in oleic acid and glycerol cultures, (3) the oxidative pentose phosphate pathway and mannitol cycle are key routes for NADPH generation, (4) the mannitol cycle and alternative oxidase activity help balance excess NADH generated from β-oxidation of oleic acid, and (5) asymmetrical gene expressions and GSM simulations of enzyme usage suggest an increased metabolic burden for oleic acid catabolism.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"85 ","pages":"Pages 1-13"},"PeriodicalIF":6.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000831","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Yarrowia lipolytica is an industrial yeast that can convert waste oil to value-added products. However, it is unclear how this yeast metabolizes lipid feedstocks, specifically triacylglycerol (TAG) substrates. This study used 13C-metabolic flux analysis (13C-MFA), genome-scale modeling, and transcriptomics analyses to investigate Y. lipolytica W29 growth with oleic acid, glycerol, and glucose. Transcriptomics data were used to guide 13C-MFA model construction and to validate the 13C-MFA results. The 13C-MFA data were then used to constrain a genome-scale model (GSM), which predicted Y. lipolytica fluxes, cofactor balance, and theoretical yields of terpene products. The three data sources provided new insights into cellular regulation during catabolism of glycerol and fatty acid components of TAG substrates, and how their consumption routes differ from glucose catabolism. We found that (1) over 80% of acetyl-CoA from oleic acid is processed through the glyoxylate shunt, a pathway that generates less CO2 compared to the TCA cycle, (2) the carnitine shuttle is a key regulator of the cytosolic acetyl-CoA pool in oleic acid and glycerol cultures, (3) the oxidative pentose phosphate pathway and mannitol cycle are key routes for NADPH generation, (4) the mannitol cycle and alternative oxidase activity help balance excess NADH generated from β-oxidation of oleic acid, and (5) asymmetrical gene expressions and GSM simulations of enzyme usage suggest an increased metabolic burden for oleic acid catabolism.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.