Jean-Baptiste Baudet , Jason Jeanne , Benoît Xuereb , Odile Dedourge-Geffard , Aurélie Duflot , Agnès Poret , Gauthier Tremolet , Frank Le Foll , Romain Coulaud
{"title":"Larval feeding activity and use of embryonic resources determine juvenile performance of the common prawn Palaemon serratus","authors":"Jean-Baptiste Baudet , Jason Jeanne , Benoît Xuereb , Odile Dedourge-Geffard , Aurélie Duflot , Agnès Poret , Gauthier Tremolet , Frank Le Foll , Romain Coulaud","doi":"10.1016/j.jtherbio.2024.103892","DOIUrl":null,"url":null,"abstract":"<div><p>Phenotypic links are the potential for “carryover” of effects of experience during one life history stage into performance and selection at subsequent stages. They reflect plastic responses to the environment experienced during an early phase on the phenotype of subsequent phases. We are studying these effects by following individuals of the shrimp <em>Palaemon serratus</em> from the embryonic (eggs carried by females) through the larval phase (pelagic) to the juvenile phase (benthic). In experiment 1, we investigated the effects of larval prey concentration (10, 4 and 2 <em>Artemia</em>/mL) and larval incubation temperature (16 and 22 °C) on larval performance (metamorphosis rate, developmental duration and growth) and then on juvenile performance (survival and Specific Growth Rate, SGR, at 18 and 24 °C in 14 days). In experiment 2, we investigated the effects of embryonic incubation temperature (larval biomass and lipid content of newly hatched larvae from embryos incubated at 12 and 18 °C) and larval prey concentration on larval performance and then on juvenile performance. In both experiments, the larvae plastically increased their development time in response to the reduction in temperature and prey concentration, whereas their survival decreased with temperature and prey concentration. The quantity of lipids available at hatching decreased with decreasing embryonic incubation temperature, which reduced the larval performance, particularly with a low concentration of prey. Survival at 14 days post-metamorphosis was significantly reduced when the embryos were incubated at 12 °C compared with those incubated at 18 °C, regardless of the subsequent larval incubation conditions, revealing phenotypic links between overconsumption of embryonic yolk reserves and post-metamorphic fitness. Overall, juveniles had a better SGR at 24 than at 18 °C, and even better when incubated under stressful embryo-larval conditions (temperature and prey concentration). This study highlighted phenotypic links between developmental stages and over developmental periods of several months.</p></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306456524001104/pdfft?md5=2b2d98c38174d013564785309f26e06b&pid=1-s2.0-S0306456524001104-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001104","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenotypic links are the potential for “carryover” of effects of experience during one life history stage into performance and selection at subsequent stages. They reflect plastic responses to the environment experienced during an early phase on the phenotype of subsequent phases. We are studying these effects by following individuals of the shrimp Palaemon serratus from the embryonic (eggs carried by females) through the larval phase (pelagic) to the juvenile phase (benthic). In experiment 1, we investigated the effects of larval prey concentration (10, 4 and 2 Artemia/mL) and larval incubation temperature (16 and 22 °C) on larval performance (metamorphosis rate, developmental duration and growth) and then on juvenile performance (survival and Specific Growth Rate, SGR, at 18 and 24 °C in 14 days). In experiment 2, we investigated the effects of embryonic incubation temperature (larval biomass and lipid content of newly hatched larvae from embryos incubated at 12 and 18 °C) and larval prey concentration on larval performance and then on juvenile performance. In both experiments, the larvae plastically increased their development time in response to the reduction in temperature and prey concentration, whereas their survival decreased with temperature and prey concentration. The quantity of lipids available at hatching decreased with decreasing embryonic incubation temperature, which reduced the larval performance, particularly with a low concentration of prey. Survival at 14 days post-metamorphosis was significantly reduced when the embryos were incubated at 12 °C compared with those incubated at 18 °C, regardless of the subsequent larval incubation conditions, revealing phenotypic links between overconsumption of embryonic yolk reserves and post-metamorphic fitness. Overall, juveniles had a better SGR at 24 than at 18 °C, and even better when incubated under stressful embryo-larval conditions (temperature and prey concentration). This study highlighted phenotypic links between developmental stages and over developmental periods of several months.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles