Geochemical evaluation of Washita-Fredericksburg formation as a carbon storage reservoir

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Nora V. Lopez Rivera , Lauren E. Beckingham
{"title":"Geochemical evaluation of Washita-Fredericksburg formation as a carbon storage reservoir","authors":"Nora V. Lopez Rivera ,&nbsp;Lauren E. Beckingham","doi":"10.1016/j.jconhyd.2024.104393","DOIUrl":null,"url":null,"abstract":"<div><p>Geological carbon sequestration is a promising technique to reduce atmospheric greenhouse gas emissions. The Washita-Fredericksburg formation in the southeastern United States is being considered as a prospective storage formation. This requires understanding the geochemical impact of CO<sub>2</sub> injection on the formation, which is the focus of this work. Here, sandstone samples from the Washita-Fredericksburg formation are analyzed to understand their overall mineralogical composition and the potential geochemical processes that might occur following CO<sub>2</sub> injection. Powder X-ray diffraction (XRD) analysis, Scanning Electron Microscopy (SEM) imaging, and image analysis were used to identify mineral phases. SEM images were processed to create a segmented mineral map, which was then used to calculate mineral volume fractions and porosity. Results show that the sample has a porosity of 20% and is mainly composed of quartz, K-feldspar, muscovite, and clays. Accessory minerals such as titanite were also found. Reactive transport models were constructed to assess potential CO<sub>2</sub>-brine-mineral interactions following CO<sub>2</sub> injection. Simulation results suggest that the overall extent of mineral dissolution and precipitation reactions over 10,000 days is limited, with muscovite dissolution increasing porosity to 22%. Limited mineral reactions suggest more injected CO<sub>2</sub> will exist in free and dissolved forms, which may require more extensive long-term monitoring.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"265 ","pages":"Article 104393"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000974","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Geological carbon sequestration is a promising technique to reduce atmospheric greenhouse gas emissions. The Washita-Fredericksburg formation in the southeastern United States is being considered as a prospective storage formation. This requires understanding the geochemical impact of CO2 injection on the formation, which is the focus of this work. Here, sandstone samples from the Washita-Fredericksburg formation are analyzed to understand their overall mineralogical composition and the potential geochemical processes that might occur following CO2 injection. Powder X-ray diffraction (XRD) analysis, Scanning Electron Microscopy (SEM) imaging, and image analysis were used to identify mineral phases. SEM images were processed to create a segmented mineral map, which was then used to calculate mineral volume fractions and porosity. Results show that the sample has a porosity of 20% and is mainly composed of quartz, K-feldspar, muscovite, and clays. Accessory minerals such as titanite were also found. Reactive transport models were constructed to assess potential CO2-brine-mineral interactions following CO2 injection. Simulation results suggest that the overall extent of mineral dissolution and precipitation reactions over 10,000 days is limited, with muscovite dissolution increasing porosity to 22%. Limited mineral reactions suggest more injected CO2 will exist in free and dissolved forms, which may require more extensive long-term monitoring.

作为碳储存库的 Washita-Fredericksburg 地层地球化学评估。
地质碳封存是减少大气温室气体排放的一项前景广阔的技术。美国东南部的瓦希塔-弗雷德里克斯堡地层被认为是一种有前景的封存地层。这就需要了解二氧化碳注入对地层的地球化学影响,这也是本研究的重点。本文分析了来自瓦希塔-弗雷德里克斯堡地层的砂岩样本,以了解其整体矿物组成以及注入二氧化碳后可能发生的潜在地球化学过程。粉末 X 射线衍射 (XRD) 分析、扫描电子显微镜 (SEM) 成像和图像分析被用来识别矿物相。对扫描电子显微镜图像进行处理后绘制出分段矿物图,然后用于计算矿物体积分数和孔隙度。结果显示,样品的孔隙率为 20%,主要由石英、K 长石、褐铁矿和粘土组成。此外,还发现了榍石等辅助矿物。构建了反应迁移模型,以评估二氧化碳注入后潜在的二氧化碳-盐-矿物相互作用。模拟结果表明,10,000 天内矿物溶解和沉淀反应的总体程度是有限的,麝香石的溶解使孔隙度增加到 22%。有限的矿物反应表明,更多注入的二氧化碳将以游离和溶解的形式存在,这可能需要更广泛的长期监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信