Rakiba Sultana , Raymond H. Johnson , Aaron D. Tigar , Timothy J. Wahl , Cullen E. Meurer , Kendyl N. Hoss , Shangping Xu , Charles J. Paradis
{"title":"Contaminant mobilization from the vadose zone to groundwater during experimental river flooding events","authors":"Rakiba Sultana , Raymond H. Johnson , Aaron D. Tigar , Timothy J. Wahl , Cullen E. Meurer , Kendyl N. Hoss , Shangping Xu , Charles J. Paradis","doi":"10.1016/j.jconhyd.2024.104391","DOIUrl":null,"url":null,"abstract":"<div><p>Natural river flooding events can mobilize contaminants from the vadose zone and lead to increased concentrations in groundwater. Characterizing the mass and transport mechanisms of contaminants released from the vadose zone to groundwater during these recharge events is particularly challenging. Therefore, conducting highly-controlled in-situ experiments that simulate natural flooding events can help increase the knowledge of where contaminants can be stored and how they can move between hydrological compartments. This study specifically targets uranium pollution, which is accompanied by high sulfate levels in the vadose zone and groundwater. Two novel experimental river flooding events were conducted that utilized added non-reactive halides (bromide and iodide) and 2,6-difluorobenzoate tracers. In both experiments, about 8 m<sup>3</sup> of traced water from a nearby contaminant-poor river was flooded in a 3-m diameter basin and infiltrated through the vadose zone and into a contaminant-rich unconfined aquifer for an average of 10 days. The aquifer contained 13 temporary wells that were monitored for solute concentration for up to 40 days. The groundwater analysis was conducted for changes in contaminant mass using the Theissen polygon method and for transport mechanisms using temporal moments. The results indicated an increase in uranium (21 and 24%), and sulfate (24 and 25%) contaminant mass transport to groundwater from the vadose zone during both experiments. These findings confirmed that the vadose zone can store and release substantial amounts of contaminants to groundwater during flooding events. Additionally, contaminants were detected earlier than the added tracers, along with higher concentrations. These results suggested that contaminant-rich pore water in the vadose zone was transported ahead of the traced flood waters and into groundwater. During the first flooding event, elevated concentrations of contaminants were sustained, and that chloride behaved similarly. The findings implied that contaminant- and chloride-rich evaporites in the vadose zone were dissolved during the first flooding event. For the second flooding event, the data suggested that the contaminant-rich evaporites continued to dissolve whereas chloride-rich evaporites were previously flushed. Overall, these findings indicated that contaminant-rich pore water and evaporites in the vadose zone can play a significant role in contaminant transport during flooding events.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"265 ","pages":"Article 104391"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000950","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Natural river flooding events can mobilize contaminants from the vadose zone and lead to increased concentrations in groundwater. Characterizing the mass and transport mechanisms of contaminants released from the vadose zone to groundwater during these recharge events is particularly challenging. Therefore, conducting highly-controlled in-situ experiments that simulate natural flooding events can help increase the knowledge of where contaminants can be stored and how they can move between hydrological compartments. This study specifically targets uranium pollution, which is accompanied by high sulfate levels in the vadose zone and groundwater. Two novel experimental river flooding events were conducted that utilized added non-reactive halides (bromide and iodide) and 2,6-difluorobenzoate tracers. In both experiments, about 8 m3 of traced water from a nearby contaminant-poor river was flooded in a 3-m diameter basin and infiltrated through the vadose zone and into a contaminant-rich unconfined aquifer for an average of 10 days. The aquifer contained 13 temporary wells that were monitored for solute concentration for up to 40 days. The groundwater analysis was conducted for changes in contaminant mass using the Theissen polygon method and for transport mechanisms using temporal moments. The results indicated an increase in uranium (21 and 24%), and sulfate (24 and 25%) contaminant mass transport to groundwater from the vadose zone during both experiments. These findings confirmed that the vadose zone can store and release substantial amounts of contaminants to groundwater during flooding events. Additionally, contaminants were detected earlier than the added tracers, along with higher concentrations. These results suggested that contaminant-rich pore water in the vadose zone was transported ahead of the traced flood waters and into groundwater. During the first flooding event, elevated concentrations of contaminants were sustained, and that chloride behaved similarly. The findings implied that contaminant- and chloride-rich evaporites in the vadose zone were dissolved during the first flooding event. For the second flooding event, the data suggested that the contaminant-rich evaporites continued to dissolve whereas chloride-rich evaporites were previously flushed. Overall, these findings indicated that contaminant-rich pore water and evaporites in the vadose zone can play a significant role in contaminant transport during flooding events.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.