Insights into the structure and dynamics of K+ ions at the muscovite-water interface from machine learning potential simulations.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Abhinav S Raman, Annabella Selloni
{"title":"Insights into the structure and dynamics of K+ ions at the muscovite-water interface from machine learning potential simulations.","authors":"Abhinav S Raman, Annabella Selloni","doi":"10.1063/5.0217720","DOIUrl":null,"url":null,"abstract":"<p><p>The surfaces of many minerals are covered by naturally occurring cations that become partially hydrated and can be replaced by hydronium or other cations when the surface is exposed to water or an aqueous solution. These ion exchange processes are relevant to various chemical and transport phenomena, yet elucidating their microscopic details is challenging for both experiments and simulations. In this work, we make a first step in this direction by investigating the behavior of the native K+ ions at the interface between neat water and the muscovite mica (001) surface with ab-initio-based machine learning molecular dynamics and enhanced sampling simulations. Our results show that the desorption of the surface K+ ions in pure ion-free water has a significant free energy barrier irrespective of their local surface arrangement. In contrast, facile K+ diffusion between mica's ditrigonal cavities characterized by different Al/Si orderings is observed. This behavior suggests that the K+ ions may favor a dynamic disordered surface arrangement rather than complete desorption when exposed to deionized water.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0217720","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The surfaces of many minerals are covered by naturally occurring cations that become partially hydrated and can be replaced by hydronium or other cations when the surface is exposed to water or an aqueous solution. These ion exchange processes are relevant to various chemical and transport phenomena, yet elucidating their microscopic details is challenging for both experiments and simulations. In this work, we make a first step in this direction by investigating the behavior of the native K+ ions at the interface between neat water and the muscovite mica (001) surface with ab-initio-based machine learning molecular dynamics and enhanced sampling simulations. Our results show that the desorption of the surface K+ ions in pure ion-free water has a significant free energy barrier irrespective of their local surface arrangement. In contrast, facile K+ diffusion between mica's ditrigonal cavities characterized by different Al/Si orderings is observed. This behavior suggests that the K+ ions may favor a dynamic disordered surface arrangement rather than complete desorption when exposed to deionized water.

从机器学习电位模拟中洞察麝香石-水界面上 K+ 离子的结构和动力学。
许多矿物的表面都覆盖着天然阳离子,当表面暴露在水或水溶液中时,这些阳离子会部分水合,并被氢离子或其他阳离子取代。这些离子交换过程与各种化学和传输现象息息相关,但阐明其微观细节对实验和模拟都具有挑战性。在这项工作中,我们通过基于非原位机器学习的分子动力学和增强采样模拟,研究了原生 K+ 离子在纯水和麝香云母 (001) 表面界面上的行为,朝着这个方向迈出了第一步。我们的结果表明,在纯净的无离子水中,表面 K+ 离子的解吸具有显著的自由能障碍,与它们的局部表面排列无关。与此相反,我们观察到 K+ 在云母具有不同铝/硅有序排列特征的二维空腔之间的顺畅扩散。这种行为表明,K+ 离子在暴露于去离子水中时,可能倾向于动态无序的表面排列,而不是完全解吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信