{"title":"Exploring CCR5 + T regulatory cell subset dysfunction in type 1 diabetes patients: implications for immune regulation.","authors":"Ławrynowicz Urszula, Juhas Ulana, Słomiński Bartosz, Okońska Maja, Myśliwiec Małgorzata, Ryba-Stanisławowska Monika","doi":"10.1007/s12026-024-09508-2","DOIUrl":null,"url":null,"abstract":"<p><p>T regulatory lymphocytes (Treg) expressing CCR5 exhibit strong suppression activity in various autoimmune disorders. However, there remains a lack of comprehensive understanding regarding their involvement in the development of type 1 diabetes (T1D). In this study, we examined the role of the CCR5/CCL5 axis in regulating inflammatory response and its impact on regulatory T cells in type 1 diabetes (T1D). We hypothesize that dysregulation of the CCR5/CCL5 axis contributes to the development and progression of T1D through modulation of Treg-dependent immune responses. We analyzed the expression levels of CCR5 on Tregs isolated from individuals with T1D, as well as the plasma concentration of its main ligands. We found that Tregs from T1D patients exhibited decreased expression of CCR5 compared to healthy controls. Additionally, we observed a correlation between the expression levels of CCR5 on Tregs and their immunosuppressive function in T1D patients. Our results indicate the impaired migratory capacity of CCR5 + Tregs, suggesting a possible link between the dysregulation of the CCR5/CCL5 axis and impaired immune regulation in T1D. In line with previous studies, our findings support the notion that dysregulation of the CCR5/CCL5 axis contributes to the development and progression of type 1 diabetes (T1D) by modulating Treg-dependent immune responses. The decreased expression of CCR5 on Tregs in T1D patients suggests a potential impairment in the migratory capacity of these cells, which could compromise their ability to suppress autoreactive T cells and maintain immune homeostasis. Furthermore, our study highlights the importance of CCR5 as a biomarker for identifying dysfunctional Tregs in T1D.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1061-1070"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12026-024-09508-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
T regulatory lymphocytes (Treg) expressing CCR5 exhibit strong suppression activity in various autoimmune disorders. However, there remains a lack of comprehensive understanding regarding their involvement in the development of type 1 diabetes (T1D). In this study, we examined the role of the CCR5/CCL5 axis in regulating inflammatory response and its impact on regulatory T cells in type 1 diabetes (T1D). We hypothesize that dysregulation of the CCR5/CCL5 axis contributes to the development and progression of T1D through modulation of Treg-dependent immune responses. We analyzed the expression levels of CCR5 on Tregs isolated from individuals with T1D, as well as the plasma concentration of its main ligands. We found that Tregs from T1D patients exhibited decreased expression of CCR5 compared to healthy controls. Additionally, we observed a correlation between the expression levels of CCR5 on Tregs and their immunosuppressive function in T1D patients. Our results indicate the impaired migratory capacity of CCR5 + Tregs, suggesting a possible link between the dysregulation of the CCR5/CCL5 axis and impaired immune regulation in T1D. In line with previous studies, our findings support the notion that dysregulation of the CCR5/CCL5 axis contributes to the development and progression of type 1 diabetes (T1D) by modulating Treg-dependent immune responses. The decreased expression of CCR5 on Tregs in T1D patients suggests a potential impairment in the migratory capacity of these cells, which could compromise their ability to suppress autoreactive T cells and maintain immune homeostasis. Furthermore, our study highlights the importance of CCR5 as a biomarker for identifying dysfunctional Tregs in T1D.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.