Sublethal effects of a spiromesifen and abamectin combination on Tetranychus urticae (Acari: Tetranychidae) and its predators Phytoseiulus persimilis and Amblyseius swirskii (Acari: Phytoseiiidae).
{"title":"Sublethal effects of a spiromesifen and abamectin combination on Tetranychus urticae (Acari: Tetranychidae) and its predators Phytoseiulus persimilis and Amblyseius swirskii (Acari: Phytoseiiidae).","authors":"Elham Rezaei, Shahram Aramideh, J P Michaud, Shahram Mirfakhraie, Maryam Forouzan","doi":"10.1007/s10493-024-00941-4","DOIUrl":null,"url":null,"abstract":"<p><p>The two-spotted spider mite, Tetranychus urticae Koch (TSSM), is an important cosmopolitan pest of agricultural crops that is often managed in greenhouses by augmentation of predatory mites in combination with acaricides. Here we examined the transgenerational effects of low lethal concentrations of a widely-used acaricide, Oberon Speed® (a combination of spiromesifen and abamectin), on the life history traits and population growth of T. urticae and two of its predators, Phytoseiulus persimilis Athias-Henriot and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). The concentrations employed corresponded to the LC<sub>10</sub>, LC<sub>20</sub> and LC<sub>30</sub> values estimated for TSSM protonymphs 48 h post-exposure in a topical bioassay, which yielded an LC<sub>50</sub> value of 207.2 ppm. Parental exposure of TSSM to all three low concentrations increased the total developmental time of progeny; both the LC<sub>20</sub> and LC<sub>30</sub> treatments reduced adult longevity and number of oviposition days, but only the LC<sub>30</sub> treatment increased the preoviposition period. Similarly, both the LC<sub>20</sub> and LC<sub>30</sub> treatments significantly reduced life table parameters (r, R<sub>0</sub>, λ, and GRR), and increased generation time (T) and population doubling time (DT). Although maternal exposure to the acaricide had various impacts on progeny life history, A. swirskii was less affected than P. persimilis, suggesting the former species would be more compatible for integration with Oberon Speed® for control of T. urticae in greenhouse vegetable production.</p>","PeriodicalId":12088,"journal":{"name":"Experimental and Applied Acarology","volume":" ","pages":"501-514"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Applied Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10493-024-00941-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The two-spotted spider mite, Tetranychus urticae Koch (TSSM), is an important cosmopolitan pest of agricultural crops that is often managed in greenhouses by augmentation of predatory mites in combination with acaricides. Here we examined the transgenerational effects of low lethal concentrations of a widely-used acaricide, Oberon Speed® (a combination of spiromesifen and abamectin), on the life history traits and population growth of T. urticae and two of its predators, Phytoseiulus persimilis Athias-Henriot and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). The concentrations employed corresponded to the LC10, LC20 and LC30 values estimated for TSSM protonymphs 48 h post-exposure in a topical bioassay, which yielded an LC50 value of 207.2 ppm. Parental exposure of TSSM to all three low concentrations increased the total developmental time of progeny; both the LC20 and LC30 treatments reduced adult longevity and number of oviposition days, but only the LC30 treatment increased the preoviposition period. Similarly, both the LC20 and LC30 treatments significantly reduced life table parameters (r, R0, λ, and GRR), and increased generation time (T) and population doubling time (DT). Although maternal exposure to the acaricide had various impacts on progeny life history, A. swirskii was less affected than P. persimilis, suggesting the former species would be more compatible for integration with Oberon Speed® for control of T. urticae in greenhouse vegetable production.
期刊介绍:
Experimental and Applied Acarology publishes peer-reviewed original papers describing advances in basic and applied research on mites and ticks. Coverage encompasses all Acari, including those of environmental, agricultural, medical and veterinary importance, and all the ways in which they interact with other organisms (plants, arthropods and other animals). The subject matter draws upon a wide variety of disciplines, including evolutionary biology, ecology, epidemiology, physiology, biochemistry, toxicology, immunology, genetics, molecular biology and pest management sciences.