Philipp Winnand, Mark Ooms, Nassim Ayoub, Daniel Schick, Felix Paulßen von Beck, Frank Hölzle, Thomas Mücke, Ali Modabber
{"title":"The impact of polydioxanone (PDS) foil thickness on reconstruction of the orbital geometry after isolated orbital floor fractures.","authors":"Philipp Winnand, Mark Ooms, Nassim Ayoub, Daniel Schick, Felix Paulßen von Beck, Frank Hölzle, Thomas Mücke, Ali Modabber","doi":"10.1007/s00068-024-02585-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The orbital floor is frequently involved in head trauma. Current evidence on the use of reconstruction materials for orbital floor repair is inconclusive. Accordingly, this study aimed to compare the impact of polydioxanone (PDS) foil thickness on reconstruction of the orbital geometry after isolated orbital floor fractures.</p><p><strong>Methods: </strong>Standardized isolated orbital floor fractures were symmetrically created in 11 cadaver heads that provided 22 orbits. PDS foils with thicknesses of 0.25-0.5 mm were inserted. Computed tomography (CT) scans of the native, fractured, and reconstructed orbits were obtained, and orbital volume, orbital height, and foil bending were measured.</p><p><strong>Results: </strong>Orbital volume and height significantly (p < 0.01) increased after the creation of isolated orbital floor fractures and significantly (p = 0.001) decreased with overcorrection of the orbital geometry after orbital floor reconstruction with PDS 0.25 mm or PDS 0.5 mm. The orbital geometry reconstruction rate did not differ significantly with respect to foil thickness. However, compared to PDS 0.5 mm, the use of PDS 0.25 mm resulted in quantitatively higher reconstructive accuracy and a restored orbital volume that did not significantly differ from the initial volume.</p><p><strong>Conclusion: </strong>Orbital floors subjected to isolated fractures were successfully reconstructed using PDS regardless of foil thickness, with overcorrection of the orbital geometry. Due to its lower flexural stiffness, PDS 0.25 mm appeared to provide more accurate orbital geometry reconstruction than PDS 0.5 mm, although no significant difference in reconstructive accuracy between PDS 0.25 mm and PDS 0.5 mm was observed in this cadaveric study.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00068-024-02585-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The orbital floor is frequently involved in head trauma. Current evidence on the use of reconstruction materials for orbital floor repair is inconclusive. Accordingly, this study aimed to compare the impact of polydioxanone (PDS) foil thickness on reconstruction of the orbital geometry after isolated orbital floor fractures.
Methods: Standardized isolated orbital floor fractures were symmetrically created in 11 cadaver heads that provided 22 orbits. PDS foils with thicknesses of 0.25-0.5 mm were inserted. Computed tomography (CT) scans of the native, fractured, and reconstructed orbits were obtained, and orbital volume, orbital height, and foil bending were measured.
Results: Orbital volume and height significantly (p < 0.01) increased after the creation of isolated orbital floor fractures and significantly (p = 0.001) decreased with overcorrection of the orbital geometry after orbital floor reconstruction with PDS 0.25 mm or PDS 0.5 mm. The orbital geometry reconstruction rate did not differ significantly with respect to foil thickness. However, compared to PDS 0.5 mm, the use of PDS 0.25 mm resulted in quantitatively higher reconstructive accuracy and a restored orbital volume that did not significantly differ from the initial volume.
Conclusion: Orbital floors subjected to isolated fractures were successfully reconstructed using PDS regardless of foil thickness, with overcorrection of the orbital geometry. Due to its lower flexural stiffness, PDS 0.25 mm appeared to provide more accurate orbital geometry reconstruction than PDS 0.5 mm, although no significant difference in reconstructive accuracy between PDS 0.25 mm and PDS 0.5 mm was observed in this cadaveric study.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.