Manabu Rohr-Fukuma , Lennart H. Stieglitz , Bartosz Bujan , Piotr Jedrysiak , Markus F. Oertel , Lena Salzmann , Christian R. Baumann , Lukas L. Imbach , Roger Gassert , Oliver Bichsel
{"title":"Neurofeedback-enabled beta power control with a fully implanted DBS system in patients with Parkinson’s disease","authors":"Manabu Rohr-Fukuma , Lennart H. Stieglitz , Bartosz Bujan , Piotr Jedrysiak , Markus F. Oertel , Lena Salzmann , Christian R. Baumann , Lukas L. Imbach , Roger Gassert , Oliver Bichsel","doi":"10.1016/j.clinph.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Parkinsonian motor symptoms are linked to pathologically increased beta oscillations in the basal ganglia. Studies with externalised deep brain stimulation electrodes showed that Parkinson patients were able to rapidly gain control over these pathological basal ganglia signals through neurofeedback. Studies with fully implanted deep brain stimulation systems duplicating these promising results are required to grant transferability to daily application.</p></div><div><h3>Methods</h3><p>In this study, seven patients with idiopathic Parkinson’s disease and one with familial Parkinson’s disease were included. In a postoperative setting, beta oscillations from the subthalamic nucleus were recorded with a fully implanted deep brain stimulation system and converted to a real-time visual feedback signal. Participants were instructed to perform bidirectional neurofeedback tasks with the aim to modulate these oscillations.</p></div><div><h3>Results</h3><p>While receiving regular medication and deep brain stimulation, participants were able to significantly improve their neurofeedback ability and achieved a significant decrease of subthalamic beta power (median reduction of 31% in the final neurofeedback block).</p></div><div><h3>Conclusion</h3><p>We could demonstrate that a fully implanted deep brain stimulation system can provide visual neurofeedback enabling patients with Parkinson’s disease to rapidly control pathological subthalamic beta oscillations.</p></div><div><h3>Significance</h3><p>Fully-implanted DBS electrode-guided neurofeedback is feasible and can now be explored over extended timespans.</p></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"165 ","pages":"Pages 1-15"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388245724001743/pdfft?md5=603dd7e83a1b169564ab0c0100d1a54d&pid=1-s2.0-S1388245724001743-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388245724001743","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Parkinsonian motor symptoms are linked to pathologically increased beta oscillations in the basal ganglia. Studies with externalised deep brain stimulation electrodes showed that Parkinson patients were able to rapidly gain control over these pathological basal ganglia signals through neurofeedback. Studies with fully implanted deep brain stimulation systems duplicating these promising results are required to grant transferability to daily application.
Methods
In this study, seven patients with idiopathic Parkinson’s disease and one with familial Parkinson’s disease were included. In a postoperative setting, beta oscillations from the subthalamic nucleus were recorded with a fully implanted deep brain stimulation system and converted to a real-time visual feedback signal. Participants were instructed to perform bidirectional neurofeedback tasks with the aim to modulate these oscillations.
Results
While receiving regular medication and deep brain stimulation, participants were able to significantly improve their neurofeedback ability and achieved a significant decrease of subthalamic beta power (median reduction of 31% in the final neurofeedback block).
Conclusion
We could demonstrate that a fully implanted deep brain stimulation system can provide visual neurofeedback enabling patients with Parkinson’s disease to rapidly control pathological subthalamic beta oscillations.
Significance
Fully-implanted DBS electrode-guided neurofeedback is feasible and can now be explored over extended timespans.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.