TCF12 induces ferroptosis by suppressing OTUB1-mediated SLC7A11 deubiquitination to promote cisplatin sensitivity in oral squamous cell carcinoma

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Yanchun Liu, Qin Bai, Nan Pang, Jun Xue
{"title":"TCF12 induces ferroptosis by suppressing OTUB1-mediated SLC7A11 deubiquitination to promote cisplatin sensitivity in oral squamous cell carcinoma","authors":"Yanchun Liu,&nbsp;Qin Bai,&nbsp;Nan Pang,&nbsp;Jun Xue","doi":"10.1002/cbin.12211","DOIUrl":null,"url":null,"abstract":"<p>Chemotherapy resistance is a major obstacle to effective cancer treatment, and promotion of ferroptosis can suppress cisplatin resistance in tumor cells. TCF12 plays a suppressive role in oral squamous cell carcinoma (OSCC), but whether it participates in the regulation of cisplatin resistance by modulating ferroptosis remains unclear. Here, we found that TCF12 expression was decreased in OSCC cells compared with normal oral cells, and it was reduced in cisplatin (DDP)-resistant OSCC cells compared with parental cells. Moreover, overexpression of TCF12 sensitized DDP-resistant cells to DDP by promoting ferroptosis. Intriguingly, silencing TCF12 reversed the promotion effect of the ferroptosis activator RSL3 on ferroptosis and DDP sensitivity, and overexpressing TCF12 antagonized the effect of the ferroptosis inhibitor liproxstatin-1 on ferroptosis and DDP resistance. Mechanically, TCF12 promoted ubiquitination of SLC7A11 and decreased SLC7A11 protein stability through transcriptional repression of OTUB1, thereby facilitating ferroptosis. Consistently, SLC7A11 overexpression neutralized the promotion effect of TCF12 on ferroptosis and DDP sensitivity. Additionally, upregulation of TCF12 hindered the growth of mouse OSCC xenografts and enhanced the DDP sensitivity of xenografts by inducing ferroptosis. In conclusion, TCF12 enhanced DDP sensitivity in OSCC cells by promoting ferroptosis, which was achieved through modulating SLC7A11 expression via transcriptional regulation of OTUB1.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1649-1663"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12211","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy resistance is a major obstacle to effective cancer treatment, and promotion of ferroptosis can suppress cisplatin resistance in tumor cells. TCF12 plays a suppressive role in oral squamous cell carcinoma (OSCC), but whether it participates in the regulation of cisplatin resistance by modulating ferroptosis remains unclear. Here, we found that TCF12 expression was decreased in OSCC cells compared with normal oral cells, and it was reduced in cisplatin (DDP)-resistant OSCC cells compared with parental cells. Moreover, overexpression of TCF12 sensitized DDP-resistant cells to DDP by promoting ferroptosis. Intriguingly, silencing TCF12 reversed the promotion effect of the ferroptosis activator RSL3 on ferroptosis and DDP sensitivity, and overexpressing TCF12 antagonized the effect of the ferroptosis inhibitor liproxstatin-1 on ferroptosis and DDP resistance. Mechanically, TCF12 promoted ubiquitination of SLC7A11 and decreased SLC7A11 protein stability through transcriptional repression of OTUB1, thereby facilitating ferroptosis. Consistently, SLC7A11 overexpression neutralized the promotion effect of TCF12 on ferroptosis and DDP sensitivity. Additionally, upregulation of TCF12 hindered the growth of mouse OSCC xenografts and enhanced the DDP sensitivity of xenografts by inducing ferroptosis. In conclusion, TCF12 enhanced DDP sensitivity in OSCC cells by promoting ferroptosis, which was achieved through modulating SLC7A11 expression via transcriptional regulation of OTUB1.

TCF12通过抑制OTUB1介导的SLC7A11去泛素化诱导铁变态反应,从而促进口腔鳞状细胞癌对顺铂的敏感性。
化疗耐药性是癌症有效治疗的一大障碍,而促进铁氧化可抑制肿瘤细胞的顺铂耐药性。TCF12在口腔鳞状细胞癌(OSCC)中起着抑制作用,但它是否通过调节铁突变参与顺铂耐药性的调控仍不清楚。在这里,我们发现与正常口腔细胞相比,TCF12在OSCC细胞中的表达量减少,与亲代细胞相比,它在顺铂(DDP)耐药的OSCC细胞中的表达量也减少了。此外,TCF12的过表达可通过促进铁变态反应使抗DDP细胞对DDP敏感。耐人寻味的是,沉默TCF12可逆转铁突变激活剂RSL3对铁突变和DDP敏感性的促进作用,而过表达TCF12可拮抗铁突变抑制剂liproxstatin-1对铁突变和DDP耐药性的影响。从机制上讲,TCF12通过转录抑制OTUB1促进了SLC7A11的泛素化并降低了SLC7A11蛋白的稳定性,从而促进了铁凋亡。一致的是,SLC7A11的过表达中和了TCF12对铁蛋白沉降和DDP敏感性的促进作用。此外,TCF12的上调会阻碍小鼠OSCC异种移植物的生长,并通过诱导铁变态反应增强异种移植物对DDP的敏感性。总之,TCF12通过促进铁变态反应增强了OSCC细胞对DDP的敏感性,而铁变态反应是通过对OTUB1的转录调控来调节SLC7A11的表达实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biology International
Cell Biology International 生物-细胞生物学
CiteScore
7.60
自引率
0.00%
发文量
208
审稿时长
1 months
期刊介绍: Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect. These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信