{"title":"Anti-inflammatory effect of covalent PPARγ ligands that have a hybrid structure of GW9662 and a food-derived cinnamic acid derivative.","authors":"Shinano Miyazawa, Misa Sakai, Yuma Omae, Yusuke Ogawa, Hideyuki Shigemori, Yusaku Miyamae","doi":"10.1093/bbb/zbae094","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the nuclear receptor superfamily and is involved in the inflammatory process. Previously, we synthesized the ligands of PPARγ that possess the hybrid structure of a food-derived cinnamic acid derivative (CA) and GW9662, an irreversible PPARγ antagonist. These ligands activate the transcription of PPARγ through the covalent bond formation with the Cys285 residue of PPARγ, whereas their anti-inflammatory effect has not been examined yet. Here, we show the anti-inflammatory effect of the covalent PPARγ ligands in RAW264 cells, murine macrophage-like cells. GW9662 suppressed the production of nitric oxide (NO) stimulated by lipopolysaccharide and exerted a synergistic effect in combination with CA. The compounds bearing their hybrid structure dramatically inhibited NO production and transcription of proinflammatory cytokines. A comparison study suggested that the 2-chloro-5-nitrobenzoyl group of the ligands is important for anti-inflammation. Furthermore, we synthesized an alkyne-tagged analogue that becomes an activity-based probe for future mechanistic study.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1136-1143"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae094","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the nuclear receptor superfamily and is involved in the inflammatory process. Previously, we synthesized the ligands of PPARγ that possess the hybrid structure of a food-derived cinnamic acid derivative (CA) and GW9662, an irreversible PPARγ antagonist. These ligands activate the transcription of PPARγ through the covalent bond formation with the Cys285 residue of PPARγ, whereas their anti-inflammatory effect has not been examined yet. Here, we show the anti-inflammatory effect of the covalent PPARγ ligands in RAW264 cells, murine macrophage-like cells. GW9662 suppressed the production of nitric oxide (NO) stimulated by lipopolysaccharide and exerted a synergistic effect in combination with CA. The compounds bearing their hybrid structure dramatically inhibited NO production and transcription of proinflammatory cytokines. A comparison study suggested that the 2-chloro-5-nitrobenzoyl group of the ligands is important for anti-inflammation. Furthermore, we synthesized an alkyne-tagged analogue that becomes an activity-based probe for future mechanistic study.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).