Microfluidic gut-axis-on-a-chip models for pharmacokinetic-based disease models.

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS
Biomicrofluidics Pub Date : 2024-06-26 eCollection Date: 2024-05-01 DOI:10.1063/5.0206271
Raehyun Kim, Jong Hwan Sung
{"title":"Microfluidic gut-axis-on-a-chip models for pharmacokinetic-based disease models.","authors":"Raehyun Kim, Jong Hwan Sung","doi":"10.1063/5.0206271","DOIUrl":null,"url":null,"abstract":"<p><p>The low success rate of new drugs transitioning from animal testing to human clinical trials necessitates the development of more accurate and representative <i>in vitro</i> models. Recent advances in multi-organ-on-a-chip technology offer promising avenues for studying complex organ-organ interactions. Gut-liver-on-a-chip systems hold particular promise for mimicking the intricate interplay between the gut and liver, which play crucial roles in nutrient absorption, drug metabolism, detoxification, and immune response. Here, we discuss the key components of the gut-liver axis, including the gut epithelium, liver cells, gut microbiota, and their roles in the organ functions. We then explore the potential of gut-liver-on-a-chip models to replicate the intricate interactions between the two organs for pharmacokinetic studies and their expansion to more complicated multi-organ models. Finally, we provide perspectives and future directions for developing more physiologically relevant gut-liver-axis models for more efficient drug development, studying liver diseases, and personalizing treatment strategies.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0206271","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The low success rate of new drugs transitioning from animal testing to human clinical trials necessitates the development of more accurate and representative in vitro models. Recent advances in multi-organ-on-a-chip technology offer promising avenues for studying complex organ-organ interactions. Gut-liver-on-a-chip systems hold particular promise for mimicking the intricate interplay between the gut and liver, which play crucial roles in nutrient absorption, drug metabolism, detoxification, and immune response. Here, we discuss the key components of the gut-liver axis, including the gut epithelium, liver cells, gut microbiota, and their roles in the organ functions. We then explore the potential of gut-liver-on-a-chip models to replicate the intricate interactions between the two organs for pharmacokinetic studies and their expansion to more complicated multi-organ models. Finally, we provide perspectives and future directions for developing more physiologically relevant gut-liver-axis models for more efficient drug development, studying liver diseases, and personalizing treatment strategies.

基于药物动力学的疾病模型的微流控芯片肠道轴模型。
新药从动物试验过渡到人体临床试验的成功率很低,因此有必要开发更准确、更具代表性的体外模型。多器官芯片技术的最新进展为研究复杂的器官间相互作用提供了前景广阔的途径。肠肝芯片系统尤其有望模拟肠道和肝脏之间错综复杂的相互作用,这两个器官在营养吸收、药物代谢、解毒和免疫反应中发挥着至关重要的作用。在此,我们将讨论肠肝轴的关键组成部分,包括肠道上皮细胞、肝细胞、肠道微生物群及其在器官功能中的作用。然后,我们探讨了片上肠道-肝脏模型复制两个器官之间错综复杂的相互作用以进行药代动力学研究的潜力,以及将其扩展到更复杂的多器官模型的可能性。最后,我们为开发更多生理相关的肠肝轴模型提供了展望和未来方向,以便更有效地开发药物、研究肝脏疾病和个性化治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信