Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery.

IF 2.1 Q3 PHARMACOLOGY & PHARMACY
Advances in Pharmacological and Pharmaceutical Sciences Pub Date : 2024-06-05 eCollection Date: 2024-01-01 DOI:10.1155/2024/1247450
Divya Marathe, Vasudeva Sampriya Bhuvanashree, Chetan Hasmukh Mehta, Ashwini T, Usha Yogendra Nayak
{"title":"Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery.","authors":"Divya Marathe, Vasudeva Sampriya Bhuvanashree, Chetan Hasmukh Mehta, Ashwini T, Usha Yogendra Nayak","doi":"10.1155/2024/1247450","DOIUrl":null,"url":null,"abstract":"<p><p>Sonophoresis is the most approachable mode of transdermal drug delivery system, wherein low-frequency sonophoresis penetrates the drug molecules into the skin. It is an alternative method for an oral system of drug delivery and hypodermal injections. The cavitation effect is thought to be the main mechanism used in sonophoresis. The cavitation process involves forming a gaseous bubble and its rupture, induced in the coupled medium. Other mechanisms used are thermal effects, convectional effects, and mechanical effects. It mainly applies to transporting hydrophilic drugs, macromolecules, gene delivery, and vaccine delivery. It is also used in carrier-mediated delivery in the form of micelles, liposomes, and dendrimers. Some synergistic effects of sonophoresis, along with some permeation enhancers, such as chemical enhancers, iontophoresis, electroporation, and microneedles, increased the effectiveness of drug penetration. Sonophoresis-mediated ocular drug delivery, nail drug delivery, gene delivery to the brain, sports medicine, and sonothrombolysis are also widely used. In conclusion, while sonophoresis offers promising applications in diverse fields, further research is essential to comprehensively elucidate the biophysical mechanisms governing ultrasound-tissue interactions. Addressing these gaps in understanding will enable the refinement and optimization of sonophoresis-based therapeutic strategies for enhanced clinical efficacy.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"1247450"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208788/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pharmacological and Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/1247450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Sonophoresis is the most approachable mode of transdermal drug delivery system, wherein low-frequency sonophoresis penetrates the drug molecules into the skin. It is an alternative method for an oral system of drug delivery and hypodermal injections. The cavitation effect is thought to be the main mechanism used in sonophoresis. The cavitation process involves forming a gaseous bubble and its rupture, induced in the coupled medium. Other mechanisms used are thermal effects, convectional effects, and mechanical effects. It mainly applies to transporting hydrophilic drugs, macromolecules, gene delivery, and vaccine delivery. It is also used in carrier-mediated delivery in the form of micelles, liposomes, and dendrimers. Some synergistic effects of sonophoresis, along with some permeation enhancers, such as chemical enhancers, iontophoresis, electroporation, and microneedles, increased the effectiveness of drug penetration. Sonophoresis-mediated ocular drug delivery, nail drug delivery, gene delivery to the brain, sports medicine, and sonothrombolysis are also widely used. In conclusion, while sonophoresis offers promising applications in diverse fields, further research is essential to comprehensively elucidate the biophysical mechanisms governing ultrasound-tissue interactions. Addressing these gaps in understanding will enable the refinement and optimization of sonophoresis-based therapeutic strategies for enhanced clinical efficacy.

低频声波电泳:增强透皮给药的有效策略。
声波透射是最容易接近的透皮给药系统模式,通过低频声波透射将药物分子渗透到皮肤中。它是口服给药系统和皮下注射的替代方法。空化效应被认为是声波透入的主要机制。空化过程包括在耦合介质中形成气泡并使其破裂。其他机制包括热效应、对流效应和机械效应。它主要用于输送亲水性药物、大分子、基因递送和疫苗递送。它还可用于胶束、脂质体和树枝状分子等载体介导的输送。声波透入与一些渗透促进剂(如化学促进剂、离子透入、电穿孔和微针)的协同作用提高了药物渗透的效果。声波介导的眼部给药、指甲给药、脑部基因给药、运动医学和声波溶栓也得到了广泛应用。总之,虽然声波电泳在不同领域的应用前景广阔,但要全面阐明超声波与组织相互作用的生物物理机制,还需要进一步的研究。解决这些认识上的差距将有助于完善和优化基于声波电泳的治疗策略,从而提高临床疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
3.60%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信