{"title":"A conceptual approach for an innovative marine animal forest apparatus that facilitates carbon sequestration and biodiversity enhancement.","authors":"B Rinkevich","doi":"10.1016/j.scitotenv.2024.174353","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change, mainly caused by the indiscriminate usage of fossil fuels, is an urgent global challenge which endangers lives and livelihood of billions of people, the integrity of environmental well-being and the composition and functioning of terrestrial/marine ecosystems alike. To address this pressing concern, climate mitigation and adaptation solutions that target \"carbon neutrality by 2050\" becomes a crucial global mission. Yet, numerous emerged broad solutions that support biological approaches, such as tree planting, are less stable under enhanced climate change impacts (e.g., forests go on fire). Targeting to achieve the Paris Agreement goals, a wide range of blue carbon sequestering (BCS) approaches have been suggested, since they may contribute considerably to carbon neutrality. Unfortunately, most biological solutions, neglect the employment of marine animal-forests. Here I discuss the potential significance of a novel approach for marine animal forests' BCS, converting the commonly used coral nursery tool into a carbon sequestering floating reef device, a modular device that may accommodate carbon and biodiversity credits.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.174353","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change, mainly caused by the indiscriminate usage of fossil fuels, is an urgent global challenge which endangers lives and livelihood of billions of people, the integrity of environmental well-being and the composition and functioning of terrestrial/marine ecosystems alike. To address this pressing concern, climate mitigation and adaptation solutions that target "carbon neutrality by 2050" becomes a crucial global mission. Yet, numerous emerged broad solutions that support biological approaches, such as tree planting, are less stable under enhanced climate change impacts (e.g., forests go on fire). Targeting to achieve the Paris Agreement goals, a wide range of blue carbon sequestering (BCS) approaches have been suggested, since they may contribute considerably to carbon neutrality. Unfortunately, most biological solutions, neglect the employment of marine animal-forests. Here I discuss the potential significance of a novel approach for marine animal forests' BCS, converting the commonly used coral nursery tool into a carbon sequestering floating reef device, a modular device that may accommodate carbon and biodiversity credits.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.