Enhancing electron transfer in anaerobic process by supercapacitor materials: Polyaniline functionated activated carbon

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Zijing Guo , Fangshu Qu , Jie Wang , Mingyue Geng , Shanshan Gao , Jiayu Tian
{"title":"Enhancing electron transfer in anaerobic process by supercapacitor materials: Polyaniline functionated activated carbon","authors":"Zijing Guo ,&nbsp;Fangshu Qu ,&nbsp;Jie Wang ,&nbsp;Mingyue Geng ,&nbsp;Shanshan Gao ,&nbsp;Jiayu Tian","doi":"10.1016/j.biortech.2024.131051","DOIUrl":null,"url":null,"abstract":"<div><p>Strengthening the direct interspecies electron transfer (DIET) is an effective strategy to improve the performance of anaerobic digestion (AD) process. In this study, the polyaniline functionated activated carbon (AC-PANi) was prepared by chemical oxidative polymerization. This material possessed pseudo-capacitance properties as well as excellent charge transfer capability. The experimental results demonstrated that the incorporation of AC-PANi in AD process could efficiently increase the chemical oxygen demand (COD) removal (18.6 %) and daily methane production rate (35.3 %). The AC-PANi can also act as an extracellular acceptor to promote the synthesis of adenosine triphosphate (ATP) and secretion of extracellular enzymes as well as cytochrome <em>C</em> (Cyt-C). The content of coenzyme F<sub>420</sub> on methanogens was also shown to be increased by 60.9 % with the addition of AC-PANi in AD reactor. Overall, this work provides an easy but feasible way to enhance AD performance by promoting DIET between acetate-producing bacteria and methanogens.</p></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424007557","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Strengthening the direct interspecies electron transfer (DIET) is an effective strategy to improve the performance of anaerobic digestion (AD) process. In this study, the polyaniline functionated activated carbon (AC-PANi) was prepared by chemical oxidative polymerization. This material possessed pseudo-capacitance properties as well as excellent charge transfer capability. The experimental results demonstrated that the incorporation of AC-PANi in AD process could efficiently increase the chemical oxygen demand (COD) removal (18.6 %) and daily methane production rate (35.3 %). The AC-PANi can also act as an extracellular acceptor to promote the synthesis of adenosine triphosphate (ATP) and secretion of extracellular enzymes as well as cytochrome C (Cyt-C). The content of coenzyme F420 on methanogens was also shown to be increased by 60.9 % with the addition of AC-PANi in AD reactor. Overall, this work provides an easy but feasible way to enhance AD performance by promoting DIET between acetate-producing bacteria and methanogens.

Abstract Image

Abstract Image

利用超级电容器材料增强厌氧过程中的电子传递:聚苯胺功能活性炭
加强种间直接电子传递(DIET)是提高厌氧消化(AD)工艺性能的有效策略。本研究采用化学氧化聚合法制备了聚苯胺功能活性炭(AC-PANi)。这种材料具有伪电容特性和出色的电荷转移能力。实验结果表明,在厌氧消化(AD)工艺中加入 AC-PANi 能有效提高化学需氧量(COD)去除率(18.6%)和甲烷日产量(35.3%)。AC-PANi 还可作为细胞外接受体,促进三磷酸腺苷(ATP)的合成和细胞外酶以及细胞色素(Cyt-C)的分泌。在厌氧消化反应器中添加 AC-PANi 后,甲烷菌体内辅酶 F 的含量也增加了 60.9%。总之,这项工作提供了一种简便可行的方法,通过促进醋酸生产菌和甲烷菌之间的DIET来提高厌氧消化反应的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信