Hesong Liu, Yang He, Hailan Liu, Bas Brouwers, Na Yin, Katherine Lawler, Julia M. Keogh, Elana Henning, Dong-Kee Lee, Meng Yu, Longlong Tu, Nan Zhang, Kristine M. Conde, Junying Han, Zili Yan, Nikolas A. Scarcelli, Lan Liao, Jianming Xu, Qingchun Tong, Hui Zheng, Zheng Sun, Yongjie Yang, Chunmei Wang, Yanlin He, I. Sadaf Farooqi, Yong Xu
{"title":"Neural circuits expressing the serotonin 2C receptor regulate memory in mice and humans","authors":"Hesong Liu, Yang He, Hailan Liu, Bas Brouwers, Na Yin, Katherine Lawler, Julia M. Keogh, Elana Henning, Dong-Kee Lee, Meng Yu, Longlong Tu, Nan Zhang, Kristine M. Conde, Junying Han, Zili Yan, Nikolas A. Scarcelli, Lan Liao, Jianming Xu, Qingchun Tong, Hui Zheng, Zheng Sun, Yongjie Yang, Chunmei Wang, Yanlin He, I. Sadaf Farooqi, Yong Xu","doi":"10.1126/sciadv.adl2675","DOIUrl":null,"url":null,"abstract":"<div >Declined memory is a hallmark of Alzheimer’s disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT<sub>2C</sub>R) in regulating memory. Transgenic mice expressing a humanized <i>HTR2C</i> mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT<sub>2C</sub>Rs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT<sub>2C</sub>R agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT<sub>2C</sub>R signaling regulates memory, which may inform the use of 5-HT<sub>2C</sub>R agonists in the treatment of dementia.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 26","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adl2675","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adl2675","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Declined memory is a hallmark of Alzheimer’s disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.