Constructions for t-designs and s-resolvable t-designs

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tran van Trung
{"title":"Constructions for t-designs and s-resolvable t-designs","authors":"Tran van Trung","doi":"10.1007/s10623-024-01448-0","DOIUrl":null,"url":null,"abstract":"<p>The purpose of the present paper is to introduce recursive methods for constructing simple <i>t</i>-designs, <i>s</i>-resolvable <i>t</i>-designs, and large sets of <i>t</i>-designs. The results turn out to be very effective for finding these objects. In particular, they reveal a fundamental property of the considered designs. Consequently, many new infinite series of simple <i>t</i>-designs, <i>t</i>-designs with <i>s</i>-resolutions and large sets of <i>t</i>-designs can be derived from the new constructions. For example, by starting with an important result of Teirlinck stating that for every natural number <i>t</i> and for all <span>\\(N &gt; 1\\)</span> there is a large set <span>\\(LS[N](t, t+1, t+N\\cdot \\ell (t))\\)</span>, where <span>\\(\\ell (t)=\\prod _{i=1}^t \\lambda (i)\\cdot \\lambda ^*(i)\\)</span>, <span>\\(\\lambda (t)=\\mathop {\\textrm{lcm}}(\\left( {\\begin{array}{c}t\\\\ m\\end{array}}\\right) \\,\\vert \\, m=1,2,\\ldots , t)\\)</span> and <span>\\(\\lambda ^*(t)=\\mathop {\\textrm{lcm}}(1,2, \\ldots , t+1)\\)</span>, we obtain the following statement. If <span>\\((t+2)\\)</span> is composite, then there is a large set <span>\\(LS[N](t, t+2, t+1+N\\cdot \\ell (t))\\)</span> for all <span>\\(N &gt; 1\\)</span>. If <span>\\((t+2)\\)</span> is prime, then there is an <span>\\(LS[N](t, t+2, t+1+N\\cdot \\ell (t))\\)</span> for any <i>N</i> with <span>\\(\\gcd (t+2,N)=1\\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01448-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of the present paper is to introduce recursive methods for constructing simple t-designs, s-resolvable t-designs, and large sets of t-designs. The results turn out to be very effective for finding these objects. In particular, they reveal a fundamental property of the considered designs. Consequently, many new infinite series of simple t-designs, t-designs with s-resolutions and large sets of t-designs can be derived from the new constructions. For example, by starting with an important result of Teirlinck stating that for every natural number t and for all \(N > 1\) there is a large set \(LS[N](t, t+1, t+N\cdot \ell (t))\), where \(\ell (t)=\prod _{i=1}^t \lambda (i)\cdot \lambda ^*(i)\), \(\lambda (t)=\mathop {\textrm{lcm}}(\left( {\begin{array}{c}t\\ m\end{array}}\right) \,\vert \, m=1,2,\ldots , t)\) and \(\lambda ^*(t)=\mathop {\textrm{lcm}}(1,2, \ldots , t+1)\), we obtain the following statement. If \((t+2)\) is composite, then there is a large set \(LS[N](t, t+2, t+1+N\cdot \ell (t))\) for all \(N > 1\). If \((t+2)\) is prime, then there is an \(LS[N](t, t+2, t+1+N\cdot \ell (t))\) for any N with \(\gcd (t+2,N)=1\).

t 设计和 s 可解 t 设计的构造
本文旨在介绍构建简单 t 设计、可解 s t 设计和大型 t 设计集的递归方法。结果证明,这些方法对寻找这些对象非常有效。特别是,它们揭示了所考虑的设计的一个基本属性。因此,从新的构造中可以推导出许多新的无限系列简单 t-设计、具有 s-分辨率的 t-设计和大型 t-设计集。例如,泰林克的一个重要结果指出,对于每个自然数 t 和所有 \(N >;1)有一个大集合(LS[N](t, t+1, t+N\cdot \ell (t)),其中(\ell (t)=\prod _{i=1}^t \lambda (i)\cdot \lambda ^*(i))、\(\lambda (t)=\mathop {\textrm{lcm}}(\left( {\begin{array}{c}t\ m\end{array}}\right) \,\vert \, m=1,2,\ldots 、t))和((lambda ^*(t)=\mathop {\textrm{lcm}}(1,2, \ldots , t+1)),我们得到下面的陈述。如果 \((t+2)\) 是复合的,那么对于所有 \(N > 1\) 都存在一个大集合 \(LS[N](t, t+2, t+1+N\cdot \ell (t))\) 。如果((t+2))是质数,那么对于任何N都有一个(LS[N](t, t+2, t+1+Ncdot \ell (t)),并且(\gcd (t+2,N)=1\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信