Age of air from in situ trace gas measurements: Insights from a new technique

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, Colm Sweeney
{"title":"Age of air from in situ trace gas measurements: Insights from a new technique","authors":"Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, Colm Sweeney","doi":"10.5194/egusphere-2024-1887","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The age of air is an important transport diagnostic that can be derived from trace gas measurements and compared to global chemistry climate model output. We describe a new technique to calculate the age of air, measuring transport times from the Earth’s surface to any location in the atmosphere based on simultaneous <em>in situ</em> measurements of multiple key long-lived trace gases. The primary benefits of this new technique include (1) optimized ages of air consistent with simultaneously measured SF<sub>6</sub> and CO<sub>2</sub>, (2) age of air from the upper troposphere through the stratosphere, (3) estimates of the second moment of age spectra that have not been well constrained from measurements and (4) flexibility to be used with measurements across multiple instruments, platforms and decades. We demonstrate the technique on aircraft and balloon measurements from the 1990s, the last period of extensive stratospheric <em>in situ</em> sampling, and several recent missions from the 2020s, and compare the results with previously published and modeled values.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"59 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1887","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The age of air is an important transport diagnostic that can be derived from trace gas measurements and compared to global chemistry climate model output. We describe a new technique to calculate the age of air, measuring transport times from the Earth’s surface to any location in the atmosphere based on simultaneous in situ measurements of multiple key long-lived trace gases. The primary benefits of this new technique include (1) optimized ages of air consistent with simultaneously measured SF6 and CO2, (2) age of air from the upper troposphere through the stratosphere, (3) estimates of the second moment of age spectra that have not been well constrained from measurements and (4) flexibility to be used with measurements across multiple instruments, platforms and decades. We demonstrate the technique on aircraft and balloon measurements from the 1990s, the last period of extensive stratospheric in situ sampling, and several recent missions from the 2020s, and compare the results with previously published and modeled values.
从现场痕量气体测量得出的空气年龄:新技术带来的启示
摘要。空气年龄是一种重要的传输诊断方法,可以从痕量气体测量中得出,并与全球化学气候模型输出结果进行比较。我们介绍了一种计算空气年龄的新技术,根据对多种关键长寿命痕量气体的同步现场测量,测量从地球表面到大气中任何位置的传输时间。这项新技术的主要优点包括:(1) 优化了与同时测量的 SF6 和 CO2 一致的空气年龄;(2) 从对流层上部到平流层的空气年龄;(3) 对年龄谱第二矩的估算,这些年龄谱在测量中没有得到很好的约束;(4) 可灵活地用于多种仪器、平台和几十年的测量。我们在 20 世纪 90 年代(平流层原地广泛采样的最后时期)的飞机和气球测量数据以及 20 世纪 20 年代的几个最新任务中演示了这一技术,并将结果与之前公布的数值和模型数值进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信