{"title":"The effect of friction block hole configurations on the brake tribological performance of high-speed trains","authors":"Yuanke Wu, Wei Chen, Youguang Zhu, Zaiyu Xiang, Honghua Qian, Jiliang Mo, Zhongrong Zhou","doi":"10.1007/s40544-023-0855-2","DOIUrl":null,"url":null,"abstract":"<p>Three triangular friction block configurations are commonly employed in high-speed train brake systems, namely, unperforated, perforated configuration with one circular hole, and perforated with three circular holes. In this study, we adopted these friction block types to investigate the effect of perforated friction block configurations on the brake performance of high-speed trains based on a self-developed brake test rig. The results indicate the significant impact of the number of the holes on the wear behavior, temperature distribution, and vibration characteristics of the brake interface. The friction surface of the unperforated block is covered by wear debris, while the perforated blocks produce less wear debris. Furthermore, the one-hole block exhibits a more uniform temperature distribution and better vibration behavior than that with three holes. The friction brake is a dynamic process, during which separation and attachment between the pad and disc alternatively occur, and the perforated structure on the friction block can both trap and expel the wear debris.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"180 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0855-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Three triangular friction block configurations are commonly employed in high-speed train brake systems, namely, unperforated, perforated configuration with one circular hole, and perforated with three circular holes. In this study, we adopted these friction block types to investigate the effect of perforated friction block configurations on the brake performance of high-speed trains based on a self-developed brake test rig. The results indicate the significant impact of the number of the holes on the wear behavior, temperature distribution, and vibration characteristics of the brake interface. The friction surface of the unperforated block is covered by wear debris, while the perforated blocks produce less wear debris. Furthermore, the one-hole block exhibits a more uniform temperature distribution and better vibration behavior than that with three holes. The friction brake is a dynamic process, during which separation and attachment between the pad and disc alternatively occur, and the perforated structure on the friction block can both trap and expel the wear debris.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.