Poroelastic Response to Karst Conduit Pressurization: A Finite Element Modeling Exercise Toward the Use of Tiltmeters in Karst Aquifer Monitoring Applications
Jacob Alexander Gochenour, Alex J. Rinehart, Andrew J. Luhmann, Ronni Grapenthin, Susan L. Bilek
{"title":"Poroelastic Response to Karst Conduit Pressurization: A Finite Element Modeling Exercise Toward the Use of Tiltmeters in Karst Aquifer Monitoring Applications","authors":"Jacob Alexander Gochenour, Alex J. Rinehart, Andrew J. Luhmann, Ronni Grapenthin, Susan L. Bilek","doi":"10.1029/2022wr034293","DOIUrl":null,"url":null,"abstract":"Tiltmeters have the potential to resolve ground deformation due to changes in hydraulic head induced by conduit pressurization. Conduit pressure variations cause groundwater to be stored or released from storage within the surrounding rock matrix. We modeled this process and infer whether the resulting deformation is measurable with tiltmeters and what behavior to expect by fully coupling porous media flow and solid mechanics in a poroelastic, 2D finite element model. Parameter sets globally representative of Paleozoic, Mesozoic, and Cenozoic confined and unconfined aquifers are considered. Our analysis focuses on the impact of the parameterization on pore pressure, vertical displacement, and tilt. We find that the spatial distribution of the poroelastic signal depends on the hydraulic diffusivity, and its magnitude depends on the mechanical and coupling parameters. Additional analysis of the impacts of conduit radius and depth suggests that tilt polarity could be an indicator of conduit location and relative conduit size. We calibrated the model to data observations acquired at the Santa Fe River Sink-Rise system in north-central Florida, US. We find that an overlying clay-rich layer may act to partially confine the aquifer. Although the observed tilt signal is present in radial and transverse components and polarity reversals occur, we were able to recover the magnitude and general trend of the tilt response.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022wr034293","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tiltmeters have the potential to resolve ground deformation due to changes in hydraulic head induced by conduit pressurization. Conduit pressure variations cause groundwater to be stored or released from storage within the surrounding rock matrix. We modeled this process and infer whether the resulting deformation is measurable with tiltmeters and what behavior to expect by fully coupling porous media flow and solid mechanics in a poroelastic, 2D finite element model. Parameter sets globally representative of Paleozoic, Mesozoic, and Cenozoic confined and unconfined aquifers are considered. Our analysis focuses on the impact of the parameterization on pore pressure, vertical displacement, and tilt. We find that the spatial distribution of the poroelastic signal depends on the hydraulic diffusivity, and its magnitude depends on the mechanical and coupling parameters. Additional analysis of the impacts of conduit radius and depth suggests that tilt polarity could be an indicator of conduit location and relative conduit size. We calibrated the model to data observations acquired at the Santa Fe River Sink-Rise system in north-central Florida, US. We find that an overlying clay-rich layer may act to partially confine the aquifer. Although the observed tilt signal is present in radial and transverse components and polarity reversals occur, we were able to recover the magnitude and general trend of the tilt response.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.