Selective CO2-to-HCOOH Electroreduction on Graphdiyne-Supported Bimetallic Single-Cluster Catalysts

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Bin Chen, Ya-Fei Jiang, Hai Xiao* and Jun Li*, 
{"title":"Selective CO2-to-HCOOH Electroreduction on Graphdiyne-Supported Bimetallic Single-Cluster Catalysts","authors":"Bin Chen,&nbsp;Ya-Fei Jiang,&nbsp;Hai Xiao* and Jun Li*,&nbsp;","doi":"10.1021/acscatal.4c00858","DOIUrl":null,"url":null,"abstract":"<p >The oxophilic elements may stabilize the O-intermediate in electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR), yet their applications for formic acid (HCOOH) production may be limited by the Sabatier principle. Here we explore the bimetallic M<sub>1</sub>Ti<sub>3</sub> (M = Ni, Pd, Pt, Cu, Ag, Au) single-cluster catalysts (SCCs) anchored on graphdiyne (GDY) for eCO<sub>2</sub>RR to produce HCOOH. First-principles calculations show that the M<sub>1</sub>Ti<sub>3</sub>/GDY SCCs prefer to activate and hydrogenate CO<sub>2</sub> to the *OCHO intermediate (*denotes the active site of the catalyst) due to the oxophilic Ti sites, while the M<sub>1</sub> site plays a key role in suppressing the adsorption of *H and tuning the adsorption of *OCHO and *HCOOH for the HCOOH production, which is attributed to the modulation of Ti–O bonding strength by the M<sub>1</sub> atom. We predict that the Au<sub>1</sub>Ti<sub>3</sub>/GDY SCC is an efficient electrocatalyst for the selective eCO<sub>2</sub>RR to produce HCOOH. The directions for further improvements for the selective eCO<sub>2</sub>RR to produce HCOOH are discussed.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c00858","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxophilic elements may stabilize the O-intermediate in electrochemical CO2 reduction reaction (eCO2RR), yet their applications for formic acid (HCOOH) production may be limited by the Sabatier principle. Here we explore the bimetallic M1Ti3 (M = Ni, Pd, Pt, Cu, Ag, Au) single-cluster catalysts (SCCs) anchored on graphdiyne (GDY) for eCO2RR to produce HCOOH. First-principles calculations show that the M1Ti3/GDY SCCs prefer to activate and hydrogenate CO2 to the *OCHO intermediate (*denotes the active site of the catalyst) due to the oxophilic Ti sites, while the M1 site plays a key role in suppressing the adsorption of *H and tuning the adsorption of *OCHO and *HCOOH for the HCOOH production, which is attributed to the modulation of Ti–O bonding strength by the M1 atom. We predict that the Au1Ti3/GDY SCC is an efficient electrocatalyst for the selective eCO2RR to produce HCOOH. The directions for further improvements for the selective eCO2RR to produce HCOOH are discussed.

Abstract Image

Abstract Image

在石墨炔支撑的双金属单簇催化剂上实现 CO2 到 HCOOH 的选择性电还原
亲氧化元素可以稳定电化学二氧化碳还原反应(eCO2RR)中的中间产物 O,但它们在甲酸(HCOOH)生产中的应用可能会受到萨巴蒂尔原理的限制。在此,我们探索了锚定在石墨二乙烯(GDY)上的双金属 M1Ti3(M = Ni、Pd、Pt、Cu、Ag、Au)单簇催化剂(SCCs),用于 eCO2RR 生产 HCOOH。第一性原理计算表明,M1Ti3/GDY SCC 由于具有亲氧化 Ti 位点,因此更倾向于活化和氢化 CO2,使其成为 *OCHO 中间体(*表示催化剂的活性位点),而 M1 位点则在抑制 *H 的吸附以及调整 *OCHO 和 *HCOOH 的吸附以产生 HCOOH 方面起着关键作用,这归因于 M1 原子对 Ti-O 键强度的调节。我们预测 Au1Ti3/GDY SCC 是选择性 eCO2RR 生成 HCOOH 的高效电催化剂。我们还讨论了进一步改进选择性 eCO2RR 以产生 HCOOH 的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信