Sarah Arpin, James Clements, Pierrick Dartois, Jonathan Komada Eriksen, Péter Kutas, Benjamin Wesolowski
{"title":"Finding orientations of supersingular elliptic curves and quaternion orders","authors":"Sarah Arpin, James Clements, Pierrick Dartois, Jonathan Komada Eriksen, Péter Kutas, Benjamin Wesolowski","doi":"10.1007/s10623-024-01435-5","DOIUrl":null,"url":null,"abstract":"<p>An oriented supersingular elliptic curve is a curve which is enhanced with the information of an endomorphism. Computing the full endomorphism ring of a supersingular elliptic curve is a known hard problem, so one might consider how hard it is to find one such orientation. We prove that access to an oracle which tells if an elliptic curve is <span>\\(\\mathfrak {O}\\)</span>-orientable for a fixed imaginary quadratic order <span>\\(\\mathfrak {O}\\)</span> provides non-trivial information towards computing an endomorphism corresponding to the <span>\\(\\mathfrak {O}\\)</span>-orientation. We provide explicit algorithms and in-depth complexity analysis. We also consider the question in terms of quaternion algebras. We provide algorithms which compute an embedding of a fixed imaginary quadratic order into a maximal order of the quaternion algebra ramified at <i>p</i> and <span>\\(\\infty \\)</span>. We provide code implementations in Sagemath (in Stein et al. Sage Mathematics Software (Version 10.0), The Sage Development Team, http://www.sagemath.org, 2023) which is efficient for finding embeddings of imaginary quadratic orders of discriminants up to <i>O</i>(<i>p</i>), even for cryptographically sized <i>p</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01435-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An oriented supersingular elliptic curve is a curve which is enhanced with the information of an endomorphism. Computing the full endomorphism ring of a supersingular elliptic curve is a known hard problem, so one might consider how hard it is to find one such orientation. We prove that access to an oracle which tells if an elliptic curve is \(\mathfrak {O}\)-orientable for a fixed imaginary quadratic order \(\mathfrak {O}\) provides non-trivial information towards computing an endomorphism corresponding to the \(\mathfrak {O}\)-orientation. We provide explicit algorithms and in-depth complexity analysis. We also consider the question in terms of quaternion algebras. We provide algorithms which compute an embedding of a fixed imaginary quadratic order into a maximal order of the quaternion algebra ramified at p and \(\infty \). We provide code implementations in Sagemath (in Stein et al. Sage Mathematics Software (Version 10.0), The Sage Development Team, http://www.sagemath.org, 2023) which is efficient for finding embeddings of imaginary quadratic orders of discriminants up to O(p), even for cryptographically sized p.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.