Efficient and Stable Production of Long-Chain Hydrocarbons over Hydrophobic Carbon-Encapsulated TiO2-Supported Ru Catalyst in Fischer–Tropsch Synthesis

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yunhao Liu, Xincheng Li, Qingpeng Cheng*, Ye Tian*, Yingtian Zhang, Tong Ding, Song Song, Kepeng Song and Xingang Li*, 
{"title":"Efficient and Stable Production of Long-Chain Hydrocarbons over Hydrophobic Carbon-Encapsulated TiO2-Supported Ru Catalyst in Fischer–Tropsch Synthesis","authors":"Yunhao Liu,&nbsp;Xincheng Li,&nbsp;Qingpeng Cheng*,&nbsp;Ye Tian*,&nbsp;Yingtian Zhang,&nbsp;Tong Ding,&nbsp;Song Song,&nbsp;Kepeng Song and Xingang Li*,&nbsp;","doi":"10.1021/acscatal.4c02979","DOIUrl":null,"url":null,"abstract":"<p >The sintering of metal catalysts caused by Ostwald ripening (OR) and particle migration and coalescence (PMC) is one of the major challenges in heterogeneous catalysis. Here, we develop an efficient Ru catalyst supported on hydrophobic carbon-encapsulated TiO<sub>2</sub> for Fischer–Tropsch synthesis (FTS). Combining comprehensive characterizations, we discover that hydrophobic carbon layers predominantly obstruct OR, and appropriate metal–support interactions avoid PMC. The dual effects collectively prevent the aggregation and sintering of diminutive Ru nanoparticles (NPs) during the FTS process and induce robust catalytic performance. Moreover, this unique structure exposes more Ru sites to promote CO hydrogenation and diminishes Ru-TiO<sub>2</sub> interfaces to adsorb more *CO and fewer *H species, which facilitates the production of longer-chain hydrocarbons. Consequently, at 220 °C, our catalyst exhibits a superior turnover frequency (<i>TOF</i>) of 0.189 s<sup>–1</sup> and a Ru time yield of 2.67 mol<sub>CO</sub> g<sub>Ru</sub><sup>–1</sup> h<sup>–1</sup>, surpassing those of the reported Ru-based catalysts. Simultaneously, the catalyst shows a C<sub>5+</sub> selectivity of 85.3% and is particularly effective in producing C<sub>15+</sub> (soft paraffin), with a selectivity of 57.3%. Our catalyst design strategy holds promise for efficient catalytic processes in various industrial applications.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c02979","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The sintering of metal catalysts caused by Ostwald ripening (OR) and particle migration and coalescence (PMC) is one of the major challenges in heterogeneous catalysis. Here, we develop an efficient Ru catalyst supported on hydrophobic carbon-encapsulated TiO2 for Fischer–Tropsch synthesis (FTS). Combining comprehensive characterizations, we discover that hydrophobic carbon layers predominantly obstruct OR, and appropriate metal–support interactions avoid PMC. The dual effects collectively prevent the aggregation and sintering of diminutive Ru nanoparticles (NPs) during the FTS process and induce robust catalytic performance. Moreover, this unique structure exposes more Ru sites to promote CO hydrogenation and diminishes Ru-TiO2 interfaces to adsorb more *CO and fewer *H species, which facilitates the production of longer-chain hydrocarbons. Consequently, at 220 °C, our catalyst exhibits a superior turnover frequency (TOF) of 0.189 s–1 and a Ru time yield of 2.67 molCO gRu–1 h–1, surpassing those of the reported Ru-based catalysts. Simultaneously, the catalyst shows a C5+ selectivity of 85.3% and is particularly effective in producing C15+ (soft paraffin), with a selectivity of 57.3%. Our catalyst design strategy holds promise for efficient catalytic processes in various industrial applications.

Abstract Image

Abstract Image

在费托合成中使用疏水性碳包封的 TiO2 支架 Ru 催化剂高效稳定地生产长链碳氢化合物
奥斯特瓦尔德熟化(OR)和颗粒迁移与凝聚(PMC)引起的金属催化剂烧结是异相催化领域的主要挑战之一。在此,我们开发了一种高效的 Ru 催化剂,该催化剂支撑在疏水性碳包封的 TiO2 上,用于费托合成(FTS)。结合全面的表征,我们发现疏水性碳层主要阻碍 OR,而适当的金属-支撑相互作用可避免 PMC。这双重作用共同防止了微小的 Ru 纳米颗粒(NPs)在 FTS 过程中的聚集和烧结,并产生了强大的催化性能。此外,这种独特的结构还暴露了更多的 Ru 位点以促进 CO 加氢,并减小了 Ru-TiO2 界面以吸附更多的 *CO 和更少的 *H,从而促进了长链碳氢化合物的生产。因此,在 220 °C 时,我们的催化剂表现出 0.189 s-1 的超高翻转频率(TOF)和 2.67 molCO gRu-1 h-1 的 Ru 时间产率,超过了已报道的 Ru 基催化剂。同时,该催化剂对 C5+ 的选择性高达 85.3%,对生产 C15+(软石蜡)尤其有效,选择性高达 57.3%。我们的催化剂设计策略为各种工业应用中的高效催化过程带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信