{"title":"Multilayer all-dielectric metasurfaces expanding color gamut","authors":"Xin Gu, Jiaqi Li, Zhouxin Liang, Bo Wang, Zhaoxiang Zhu, Yujie Chen","doi":"10.1515/nanoph-2024-0258","DOIUrl":null,"url":null,"abstract":"Structural color, arising from the interaction between nanostructures and light, has experienced rapid development in recent years. However, high-order Mie resonances in dielectric materials often induce unnecessary sub-peaks, particularly at shorter wavelengths, reducing the vibrancy of colors. To address this, we have developed a multilayer dielectric metasurface based on silicon-rich silicon nitride (SRN), achieving expanded color gamut through precise refractive index matching and suppression of high-order resonances. This strategy introduces more design dimensions and can reduce the complexity of material deposition. It enables the generation of vibrant colors in a 3 × 3 array, with a resolution of approximately 25,400 dpi, demonstrating its potential applications in displays.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"118 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0258","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Structural color, arising from the interaction between nanostructures and light, has experienced rapid development in recent years. However, high-order Mie resonances in dielectric materials often induce unnecessary sub-peaks, particularly at shorter wavelengths, reducing the vibrancy of colors. To address this, we have developed a multilayer dielectric metasurface based on silicon-rich silicon nitride (SRN), achieving expanded color gamut through precise refractive index matching and suppression of high-order resonances. This strategy introduces more design dimensions and can reduce the complexity of material deposition. It enables the generation of vibrant colors in a 3 × 3 array, with a resolution of approximately 25,400 dpi, demonstrating its potential applications in displays.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.