Axonemal tubules in the distal sperm tail of Wolbachia-infected Drosophila simulans males contain ring-like intraluminal structures that persist after axoneme fragmentation
Ambra Pratelli, Maria Giovanna Riparbelli, Giuliano Callaini
{"title":"Axonemal tubules in the distal sperm tail of Wolbachia-infected Drosophila simulans males contain ring-like intraluminal structures that persist after axoneme fragmentation","authors":"Ambra Pratelli, Maria Giovanna Riparbelli, Giuliano Callaini","doi":"10.1002/cm.21891","DOIUrl":null,"url":null,"abstract":"<p><i>Wolbachia</i> are obligate intracellular alphaproteobacteria that enhance their spreading by altering the reproductive mechanisms of several invertebrates. Among the reproductive alterations, <i>Wolbachia</i> also causes cytoplasmic incompatibility that leads to embryo death when infected males are crossed with uninfected females, thus selecting infected females. However, the presence of <i>Wolbachia</i> has important fitness costs and infected <i>Drosophila simulans</i> males produce less sperm than their uninfected counterparts. Such sperm suffer, indeed, of some structural alterations that hinder their proper function. We took advantage of the fact that several sperm have abnormal distal regions of the tail, in which the plasma membrane is broken and the axonemal components splayed, making the ultrastructural aspects clearly observable. We found that axoneme reduction in the distal region of the sperm does not follow a unique pattern as observed in other insects, but occurs by losing accessory tubules or peripheral doublets. The axonemal tubules contain distinct coaxial ring-like structures that are still observed after axoneme fragmentation and form large clusters of several units.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"82 4","pages":"234-241"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cm.21891","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wolbachia are obligate intracellular alphaproteobacteria that enhance their spreading by altering the reproductive mechanisms of several invertebrates. Among the reproductive alterations, Wolbachia also causes cytoplasmic incompatibility that leads to embryo death when infected males are crossed with uninfected females, thus selecting infected females. However, the presence of Wolbachia has important fitness costs and infected Drosophila simulans males produce less sperm than their uninfected counterparts. Such sperm suffer, indeed, of some structural alterations that hinder their proper function. We took advantage of the fact that several sperm have abnormal distal regions of the tail, in which the plasma membrane is broken and the axonemal components splayed, making the ultrastructural aspects clearly observable. We found that axoneme reduction in the distal region of the sperm does not follow a unique pattern as observed in other insects, but occurs by losing accessory tubules or peripheral doublets. The axonemal tubules contain distinct coaxial ring-like structures that are still observed after axoneme fragmentation and form large clusters of several units.
期刊介绍:
Cytoskeleton focuses on all aspects of cytoskeletal research in healthy and diseased states, spanning genetic and cell biological observations, biochemical, biophysical and structural studies, mathematical modeling and theory. This includes, but is certainly not limited to, classic polymer systems of eukaryotic cells and their structural sites of attachment on membranes and organelles, as well as the bacterial cytoskeleton, the nucleoskeleton, and uncoventional polymer systems with structural/organizational roles. Cytoskeleton is published in 12 issues annually, and special issues will be dedicated to especially-active or newly-emerging areas of cytoskeletal research.