Are alternative variables in a set differently associated with a target variable? Statistical tests and practical advice for dealing with dependent correlations.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Miguel A García-Pérez
{"title":"Are alternative variables in a set differently associated with a target variable? Statistical tests and practical advice for dealing with dependent correlations.","authors":"Miguel A García-Pérez","doi":"10.1111/bmsp.12354","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of multiple bivariate correlations is often carried out by conducting simple tests to check whether each of them is significantly different from zero. In addition, pairwise differences are often judged by eye or by comparing the p-values of the individual tests of significance despite the existence of statistical tests for differences between correlations. This paper uses simulation methods to assess the accuracy (empirical Type I error rate), power, and robustness of 10 tests designed to check the significance of the difference between two dependent correlations with overlapping variables (i.e., the correlation between X<sub>1</sub> and Y and the correlation between X<sub>2</sub> and Y). Five of the tests turned out to be inadvisable because their empirical Type I error rates under normality differ greatly from the nominal alpha level of .05 either across the board or within certain sub-ranges of the parameter space. The remaining five tests were acceptable and their merits were similar in terms of all comparison criteria, although none of them was robust across all forms of non-normality explored in the study. Practical recommendations are given for the choice of a statistical test to compare dependent correlations with overlapping variables.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12354","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of multiple bivariate correlations is often carried out by conducting simple tests to check whether each of them is significantly different from zero. In addition, pairwise differences are often judged by eye or by comparing the p-values of the individual tests of significance despite the existence of statistical tests for differences between correlations. This paper uses simulation methods to assess the accuracy (empirical Type I error rate), power, and robustness of 10 tests designed to check the significance of the difference between two dependent correlations with overlapping variables (i.e., the correlation between X1 and Y and the correlation between X2 and Y). Five of the tests turned out to be inadvisable because their empirical Type I error rates under normality differ greatly from the nominal alpha level of .05 either across the board or within certain sub-ranges of the parameter space. The remaining five tests were acceptable and their merits were similar in terms of all comparison criteria, although none of them was robust across all forms of non-normality explored in the study. Practical recommendations are given for the choice of a statistical test to compare dependent correlations with overlapping variables.

一组变量中的其他变量与目标变量的相关性是否不同?处理从属相关性的统计检验和实用建议。
在分析多个二元相关性时,通常会进行简单的检验,检查每个相关性是否与零有显著 差异。此外,尽管存在相关性之间差异的统计检验,但通常通过眼睛或比较单个显著性检验的 p 值来判断成对差异。本文使用模拟方法评估了 10 个检验的准确性(经验 I 类错误率)、有效性和稳健性,这些检验旨在检查两个变量重叠的因变量相关性(即 X1 和 Y 之间的相关性以及 X2 和 Y 之间的相关性)之间差异的显著性。其中五个测试结果是不可取的,因为它们在正态性下的经验 I 类误差率与 0.05 的名义α水平相差很大,要么是全面相差,要么是在参数空间的某些子范围内相差很大。其余五种检验是可以接受的,它们在所有比较标准方面的优点相似,但没有一种检验在本研究探讨的所有非正态性形式中都是稳健的。本文就如何选择统计检验来比较具有重叠变量的因果相关性提出了实用建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信