Z Zhu, B Hu, D Zhu, X Li, D Chen, N Wu, Q Rao, Z Zhang, H Wang, Y Zhu
{"title":"Bromocriptine sensitivity in bromocriptine-induced drug-resistant prolactinomas is restored by inhibiting FGF19/FGFR4/PRL.","authors":"Z Zhu, B Hu, D Zhu, X Li, D Chen, N Wu, Q Rao, Z Zhang, H Wang, Y Zhu","doi":"10.1007/s40618-024-02408-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>At present, various treatment strategies are available for pituitary adenomas, including medications, surgery and radiation. The guidelines indicate that pharmacological treatments, such as bromocriptine (BRC) and cabergoline (CAB), are important treatments for prolactinomas, but drug resistance is an urgent problem that needs to be addressed. Therefore, exploring the mechanism of drug resistance in prolactinomas is beneficial for clinical treatment.</p><p><strong>Methods: </strong>In our research, BRC-induced drug-resistant cells were established. Previous RNA sequencing data and an online database were used for preliminary screening of resistance-related genes. Cell survival was determined by Cell Counting Kit-8 (CCK-8) assay, colony formation assays and flow cytometry. Quantitative real-time polymerase chain reaction (qRT‒PCR), western blotting, immunohistochemistry, immunofluorescence and Co-immunoprecipitation (Co-IP) were used to assess the molecular changes and regulation. The therapeutic efficacy of BRC and FGFR4 inhibitor fisogatinib (FISO) combination was evaluated in drug-resistant cells and xenograft tumors in nude mice.</p><p><strong>Results: </strong>Consistent with the preliminary results of RNA sequencing and database screening, fibroblast growth factor 19 (FGF19) expression was elevated in drug-resistant cells and tumor samples. With FGF19 silencing, drug-resistant cells exhibited increased sensitivity to BRC and decreased intracellular phosphorylated fibroblast growth factor receptor 4 (FGFR4) levels. After confirming that FGF19 binds to FGFR4 in prolactinoma cells, we found that FGF19/FGFR4 regulated prolactin (PRL) synthesis through the ERK1/2 and JNK signaling pathways. Regarding the effect of targeting FGF19/FGFR4 on BRC efficacy, FISO and BRC synergistically inhibited the growth of tumor cells, promoted apoptosis and reduced PRL levels.</p><p><strong>Conclusion: </strong>Overall, our study revealed FGF19/FGFR4 as a new mechanism involved in the drug resistance of prolactinomas, and combination therapy targeting the pathway could be helpful for the treatment of BRC-induced drug-resistant prolactinomas.</p>","PeriodicalId":48802,"journal":{"name":"Journal of Endocrinological Investigation","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinological Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40618-024-02408-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: At present, various treatment strategies are available for pituitary adenomas, including medications, surgery and radiation. The guidelines indicate that pharmacological treatments, such as bromocriptine (BRC) and cabergoline (CAB), are important treatments for prolactinomas, but drug resistance is an urgent problem that needs to be addressed. Therefore, exploring the mechanism of drug resistance in prolactinomas is beneficial for clinical treatment.
Methods: In our research, BRC-induced drug-resistant cells were established. Previous RNA sequencing data and an online database were used for preliminary screening of resistance-related genes. Cell survival was determined by Cell Counting Kit-8 (CCK-8) assay, colony formation assays and flow cytometry. Quantitative real-time polymerase chain reaction (qRT‒PCR), western blotting, immunohistochemistry, immunofluorescence and Co-immunoprecipitation (Co-IP) were used to assess the molecular changes and regulation. The therapeutic efficacy of BRC and FGFR4 inhibitor fisogatinib (FISO) combination was evaluated in drug-resistant cells and xenograft tumors in nude mice.
Results: Consistent with the preliminary results of RNA sequencing and database screening, fibroblast growth factor 19 (FGF19) expression was elevated in drug-resistant cells and tumor samples. With FGF19 silencing, drug-resistant cells exhibited increased sensitivity to BRC and decreased intracellular phosphorylated fibroblast growth factor receptor 4 (FGFR4) levels. After confirming that FGF19 binds to FGFR4 in prolactinoma cells, we found that FGF19/FGFR4 regulated prolactin (PRL) synthesis through the ERK1/2 and JNK signaling pathways. Regarding the effect of targeting FGF19/FGFR4 on BRC efficacy, FISO and BRC synergistically inhibited the growth of tumor cells, promoted apoptosis and reduced PRL levels.
Conclusion: Overall, our study revealed FGF19/FGFR4 as a new mechanism involved in the drug resistance of prolactinomas, and combination therapy targeting the pathway could be helpful for the treatment of BRC-induced drug-resistant prolactinomas.
期刊介绍:
The Journal of Endocrinological Investigation is a well-established, e-only endocrine journal founded 36 years ago in 1978. It is the official journal of the Italian Society of Endocrinology (SIE), established in 1964. Other Italian societies in the endocrinology and metabolism field are affiliated to the journal: Italian Society of Andrology and Sexual Medicine, Italian Society of Obesity, Italian Society of Pediatric Endocrinology and Diabetology, Clinical Endocrinologists’ Association, Thyroid Association, Endocrine Surgical Units Association, Italian Society of Pharmacology.