{"title":"Effects of guanidino acetic acid and betaine supplementation on growth, dietary nutrient digestion and intestinal creatine metabolism in sheep.","authors":"Chen Ma, Mireguli Yimamu, Shiqi Zhang, Ali Mujtaba Shah, Hao Yang, Wenjie Cai, Chaonan Li, Xuejie Lu, Fengming Li, Kailun Yang","doi":"10.1002/vms3.1470","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep.</p><p><strong>Methods: </strong>Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively.</p><p><strong>Results: </strong>Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05).</p><p><strong>Conclusion: </strong>Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.</p>","PeriodicalId":23543,"journal":{"name":"Veterinary Medicine and Science","volume":"10 4","pages":"e1470"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Medicine and Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/vms3.1470","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep.
Methods: Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively.
Results: Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05).
Conclusion: Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.
期刊介绍:
Veterinary Medicine and Science is the peer-reviewed journal for rapid dissemination of research in all areas of veterinary medicine and science. The journal aims to serve the research community by providing a vehicle for authors wishing to publish interesting and high quality work in both fundamental and clinical veterinary medicine and science.
Veterinary Medicine and Science publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.
We aim to be a truly global forum for high-quality research in veterinary medicine and science, and believe that the best research should be published and made widely accessible as quickly as possible. Veterinary Medicine and Science publishes papers submitted directly to the journal and those referred from a select group of prestigious journals published by Wiley-Blackwell.
Veterinary Medicine and Science is a Wiley Open Access journal, one of a new series of peer-reviewed titles publishing quality research with speed and efficiency. For further information visit the Wiley Open Access website.