J McCullagh, C Booth, J Lancut, S Platton, P Richards, L Green
{"title":"Every minute counts: A comparison of thawing times and haemostatic quality of plasma thawed at 37°C and 45°C using four different methods.","authors":"J McCullagh, C Booth, J Lancut, S Platton, P Richards, L Green","doi":"10.1111/tme.13061","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Having faster plasma thawing devices could be beneficial for transfusion services, as it may improve the rapid availability of thawed plasma for bleeding patients, and it might remove the need to have extended pre-thawed plasma: thus, reducing unnecessary plasma wastage.</p><p><strong>Study design and methods: </strong>The aims of this study were to assess (a) the thawing times and (b) in vitro haemostatic quality of thawed plasma using Barkey Plasmatherm V (PTV) at 37 and 45°C versus Barkey Plasmatherm Classic (PTC) at 37 and 45°C, Sarstedt Sahara-III Maxitherm (SS-III) at 37°C and Helmer Scientific Thermogenesis Thermoline (TT) at 37°C. Haemostatic quality was assessed using LG-Octaplas at three different time points: baseline (5 min), 24 and 120 h after thawing.</p><p><strong>Results: </strong>The thawing time (SD) of 2 and 4 units was significantly different between different thawers. PTV at 45°C was the fastest method for both 2 and 4 units (7.06 min [0.68], 9.6 min [0.87], respectively). SS-III at 37°C being the slowest method (24.69 min [2.09] and 27.18 min [4.4], respectively) (p = < 0.05). Baseline measurements for all assays showed no significant difference in the prothrombin time, fibrinogen, FII, FV, protein C activity or free protein S antigen between all methods tested. However, at baseline PTV (both 37°C and 45°C) had significantly higher levels of FVII, FVIII and FXI and shortened activated partial thromboplastin time.</p><p><strong>Discussion: </strong>PTV was the quickest method at thawing plasma at both 37 and at 45°C. The haemostatic quality of plasma thawed at 45 versus 37°C was not impaired. Thawing frozen plasma at 45°C should be considered.</p>","PeriodicalId":23306,"journal":{"name":"Transfusion Medicine","volume":" ","pages":"304-310"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transfusion Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/tme.13061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Having faster plasma thawing devices could be beneficial for transfusion services, as it may improve the rapid availability of thawed plasma for bleeding patients, and it might remove the need to have extended pre-thawed plasma: thus, reducing unnecessary plasma wastage.
Study design and methods: The aims of this study were to assess (a) the thawing times and (b) in vitro haemostatic quality of thawed plasma using Barkey Plasmatherm V (PTV) at 37 and 45°C versus Barkey Plasmatherm Classic (PTC) at 37 and 45°C, Sarstedt Sahara-III Maxitherm (SS-III) at 37°C and Helmer Scientific Thermogenesis Thermoline (TT) at 37°C. Haemostatic quality was assessed using LG-Octaplas at three different time points: baseline (5 min), 24 and 120 h after thawing.
Results: The thawing time (SD) of 2 and 4 units was significantly different between different thawers. PTV at 45°C was the fastest method for both 2 and 4 units (7.06 min [0.68], 9.6 min [0.87], respectively). SS-III at 37°C being the slowest method (24.69 min [2.09] and 27.18 min [4.4], respectively) (p = < 0.05). Baseline measurements for all assays showed no significant difference in the prothrombin time, fibrinogen, FII, FV, protein C activity or free protein S antigen between all methods tested. However, at baseline PTV (both 37°C and 45°C) had significantly higher levels of FVII, FVIII and FXI and shortened activated partial thromboplastin time.
Discussion: PTV was the quickest method at thawing plasma at both 37 and at 45°C. The haemostatic quality of plasma thawed at 45 versus 37°C was not impaired. Thawing frozen plasma at 45°C should be considered.
期刊介绍:
Transfusion Medicine publishes articles on transfusion medicine in its widest context, including blood transfusion practice (blood procurement, pharmaceutical, clinical, scientific, computing and documentary aspects), immunohaematology, immunogenetics, histocompatibility, medico-legal applications, and related molecular biology and biotechnology.
In addition to original articles, which may include brief communications and case reports, the journal contains a regular educational section (based on invited reviews and state-of-the-art reports), technical section (including quality assurance and current practice guidelines), leading articles, letters to the editor, occasional historical articles and signed book reviews. Some lectures from Society meetings that are likely to be of general interest to readers of the Journal may be published at the discretion of the Editor and subject to the availability of space in the Journal.