Kittichate Visuttijai, Carola Hedberg-Oldfors, Daniel J Costello, Niamh Bermingham, Anders Oldfors
{"title":"Proteomic profiling of polyglucosan bodies associated with glycogenin-1 deficiency in skeletal muscle.","authors":"Kittichate Visuttijai, Carola Hedberg-Oldfors, Daniel J Costello, Niamh Bermingham, Anders Oldfors","doi":"10.1111/nan.12995","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Polyglucosan storage disorders represent an emerging field within neurodegenerative and neuromuscular conditions, including Lafora disease (EPM2A, EPM2B), adult polyglucosan body disease (APBD, GBE1), polyglucosan body myopathies associated with RBCK1 deficiency (PGBM1, RBCK1) or glycogenin-1 deficiency (PGBM2, GYG1). While the storage material primarily comprises glycans, this study aimed to gain deeper insights into the protein components by proteomic profiling of the storage material in glycogenin-1 deficiency.</p><p><strong>Methods: </strong>We employed molecular genetic analyses, quantitative mass spectrometry of laser micro-dissected polyglucosan bodies and muscle homogenate, immunohistochemistry and western blot analyses in muscle tissue from a 45-year-old patient with proximal muscle weakness from late teenage years due to polyglucosan storage myopathy.</p><p><strong>Results: </strong>The muscle tissue exhibited a complete absence of glycogenin-1 due to a novel homozygous deep intronic variant in GYG1 (c.7+992T>G), introducing a pseudo-exon causing frameshift and a premature stop codon. Accumulated proteins in the polyglucosan bodies constituted components of glycogen metabolism, protein quality control pathways and desmin. Muscle fibres containing polyglucosan bodies frequently exhibited depletion of normal glycogen.</p><p><strong>Conclusions: </strong>The absence of glycogenin-1, a protein important for glycogen synthesis initiation, causes storage of polyglucosan that displays accumulation of several proteins, including those essential for glycogen synthesis, sequestosome 1/p62 and desmin, mirroring findings in RBCK1 deficiency. These results suggest shared pathogenic pathways across different diseases exhibiting polyglucosan storage. Such insights have implications for therapy in these rare yet devastating and presently untreatable disorders.</p>","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":"50 3","pages":"e12995"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.12995","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Polyglucosan storage disorders represent an emerging field within neurodegenerative and neuromuscular conditions, including Lafora disease (EPM2A, EPM2B), adult polyglucosan body disease (APBD, GBE1), polyglucosan body myopathies associated with RBCK1 deficiency (PGBM1, RBCK1) or glycogenin-1 deficiency (PGBM2, GYG1). While the storage material primarily comprises glycans, this study aimed to gain deeper insights into the protein components by proteomic profiling of the storage material in glycogenin-1 deficiency.
Methods: We employed molecular genetic analyses, quantitative mass spectrometry of laser micro-dissected polyglucosan bodies and muscle homogenate, immunohistochemistry and western blot analyses in muscle tissue from a 45-year-old patient with proximal muscle weakness from late teenage years due to polyglucosan storage myopathy.
Results: The muscle tissue exhibited a complete absence of glycogenin-1 due to a novel homozygous deep intronic variant in GYG1 (c.7+992T>G), introducing a pseudo-exon causing frameshift and a premature stop codon. Accumulated proteins in the polyglucosan bodies constituted components of glycogen metabolism, protein quality control pathways and desmin. Muscle fibres containing polyglucosan bodies frequently exhibited depletion of normal glycogen.
Conclusions: The absence of glycogenin-1, a protein important for glycogen synthesis initiation, causes storage of polyglucosan that displays accumulation of several proteins, including those essential for glycogen synthesis, sequestosome 1/p62 and desmin, mirroring findings in RBCK1 deficiency. These results suggest shared pathogenic pathways across different diseases exhibiting polyglucosan storage. Such insights have implications for therapy in these rare yet devastating and presently untreatable disorders.
期刊介绍:
Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.