{"title":"An Insightful Overview of Microbial Biosurfactant: A Promising Next-Generation Biomolecule for Sustainable Future","authors":"Athira Thundiparambil Venu, Jasna Vijayan, Mohamed Hatha Abdulla Ammanamveetil, Krishnan Kottekkattu Padinchati","doi":"10.1002/jobm.202300757","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microbial biosurfactant is an emerging vital biomolecule of the 21st century. They are amphiphilic compounds produced by microorganisms and possess unique properties to reduce surface tension activity. The use of microbial surfactants spans most of the industrial fields due to their biodegradability, less toxicity, being environmentally safe, and being synthesized from renewable sources. These would be highly efficient eco-friendly alternatives to petroleum-derived surfactants that would open up new approaches to research on the production of biosurfactants. In the upcoming era, biobased surfactants will become a dominating multifunctional compound in the world market. Research on biosurfactants ranges from the search for novel microorganisms that can produce new molecules, structural and physiochemical characterization of biosurfactants, and fermentation process for enhanced large-scale productivity and green applications. The main goal of this review is to provide an overview of the recent state of knowledge and trends about microbially derived surfactants, various aspects of biosurfactant production, definition, properties, characteristics, diverse advances, and applications. This would lead a long way in the production of biosurfactants as globally successful biomolecules of the current century.</p>\n </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202300757","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial biosurfactant is an emerging vital biomolecule of the 21st century. They are amphiphilic compounds produced by microorganisms and possess unique properties to reduce surface tension activity. The use of microbial surfactants spans most of the industrial fields due to their biodegradability, less toxicity, being environmentally safe, and being synthesized from renewable sources. These would be highly efficient eco-friendly alternatives to petroleum-derived surfactants that would open up new approaches to research on the production of biosurfactants. In the upcoming era, biobased surfactants will become a dominating multifunctional compound in the world market. Research on biosurfactants ranges from the search for novel microorganisms that can produce new molecules, structural and physiochemical characterization of biosurfactants, and fermentation process for enhanced large-scale productivity and green applications. The main goal of this review is to provide an overview of the recent state of knowledge and trends about microbially derived surfactants, various aspects of biosurfactant production, definition, properties, characteristics, diverse advances, and applications. This would lead a long way in the production of biosurfactants as globally successful biomolecules of the current century.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).