Decellularized leaf-based biomaterial supports osteogenic differentiation of dental pulp mesenchymal stem cells.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-09-01 Epub Date: 2024-06-27 DOI:10.1007/s11626-024-00937-9
Kaustubh Raundal, Avinash Kharat, Avinash Sanap, Supriya Kheur, Pranjali Potdar, Swapnali Sakhare, Ramesh Bhonde
{"title":"Decellularized leaf-based biomaterial supports osteogenic differentiation of dental pulp mesenchymal stem cells.","authors":"Kaustubh Raundal, Avinash Kharat, Avinash Sanap, Supriya Kheur, Pranjali Potdar, Swapnali Sakhare, Ramesh Bhonde","doi":"10.1007/s11626-024-00937-9","DOIUrl":null,"url":null,"abstract":"<p><p>Decellularized tissues are an attractive scaffolds for 3D tissue engineering. Decellularized animal tissues have certain limitations such as the availability of tissue, high costs and ethical concerns related to the use of animal sources. Plant-based tissue decellularized scaffolds could be a better option to overcome the problem. The leaves of different plants offer a unique opportunity for the development of tissue-specific scaffolds, depending on the reticulate or parallel veination. Herein, we decellularized spinach leaves and employed these for the propagation and osteogenic differentiation of dental pulp stem cells (DPSCs). DPSCs were characterized by using mesenchymal stem cell surface markers CD90, CD105 and CD73 and CD34, CD45 and HLA-DR using flow cytometry. Spinach leaves were decellularized using ethanol, NaOH and HCL. Cytotoxicity of spinach leaf scaffolds were analysed by MTT assay. Decellularized spinach leaves supported dental pulp stem cell adhesion, proliferation and osteogenic differentiation. Our data demonstrate that the decellularized spinach cellulose scaffolds can stimulate the growth, proliferation and osteogenic differentiation of DPSCs. In this study, we showed the versatile nature of decellularized plant leaves as a biological scaffold and their potential for bone regeneration in vitro.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00937-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Decellularized tissues are an attractive scaffolds for 3D tissue engineering. Decellularized animal tissues have certain limitations such as the availability of tissue, high costs and ethical concerns related to the use of animal sources. Plant-based tissue decellularized scaffolds could be a better option to overcome the problem. The leaves of different plants offer a unique opportunity for the development of tissue-specific scaffolds, depending on the reticulate or parallel veination. Herein, we decellularized spinach leaves and employed these for the propagation and osteogenic differentiation of dental pulp stem cells (DPSCs). DPSCs were characterized by using mesenchymal stem cell surface markers CD90, CD105 and CD73 and CD34, CD45 and HLA-DR using flow cytometry. Spinach leaves were decellularized using ethanol, NaOH and HCL. Cytotoxicity of spinach leaf scaffolds were analysed by MTT assay. Decellularized spinach leaves supported dental pulp stem cell adhesion, proliferation and osteogenic differentiation. Our data demonstrate that the decellularized spinach cellulose scaffolds can stimulate the growth, proliferation and osteogenic differentiation of DPSCs. In this study, we showed the versatile nature of decellularized plant leaves as a biological scaffold and their potential for bone regeneration in vitro.

Abstract Image

基于树叶的脱细胞生物材料支持牙髓间充质干细胞的成骨分化。
脱细胞组织是一种极具吸引力的三维组织工程支架。脱细胞动物组织有一定的局限性,如组织的可获得性、高成本以及与使用动物来源有关的伦理问题。植物组织脱细胞支架可能是克服这一问题的更好选择。不同植物的叶片为开发组织特异性支架提供了独特的机会,这取决于网状或平行脉络。在此,我们对菠菜叶进行了脱细胞处理,并将其用于牙髓干细胞(DPSCs)的繁殖和成骨分化。利用间充质干细胞表面标志物CD90、CD105和CD73以及流式细胞仪检测CD34、CD45和HLA-DR,对DPSCs进行表征。使用乙醇、NaOH 和 HCL 对菠菜叶进行脱细胞处理。用 MTT 法分析菠菜叶支架的细胞毒性。脱细胞菠菜叶支持牙髓干细胞粘附、增殖和成骨分化。我们的数据表明,脱细胞菠菜纤维素支架可刺激牙髓干细胞的生长、增殖和成骨分化。在这项研究中,我们展示了脱细胞植物叶片作为生物支架的多功能性及其在体外骨再生方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信