Xiaoming Wang, Xijia Liang, Nan Zhang, Yaqi Wang, Meng Hu, Yun Shi, Min Yao, Lianguo Hou, Lingling Jiang
{"title":"Gamma-Tocotrienol Inhibits Proliferation and Growth of HSD17B4-Overexpressing HepG2 Liver Cancer Cells.","authors":"Xiaoming Wang, Xijia Liang, Nan Zhang, Yaqi Wang, Meng Hu, Yun Shi, Min Yao, Lianguo Hou, Lingling Jiang","doi":"10.2174/0115680096319171240623091614","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hydroxysteroid 17-beta dehydrogenase 4 (HSD17B4) is involved in the progression of hepatocellular carcinoma (HCC).</p><p><strong>Aims: </strong>This study aimed to investigate the inhibitory effect of gamma-tocotrienol (γ-T3) on the proliferation and growth of HSD17B4-overexpressing HepG2 cells.</p><p><strong>Methods: </strong>HepG2 cells were transfected with empty or HSD17B4-overexpressing plasmids, followed by vitamin E (VE) or γ-T3 treatment. MTS assay, Western blotting, qRT-PCR, and flow cytometry were employed to assess cell proliferation, protein expression, mRNA levels, and apoptosis. HSD17B4 interaction with γ-T3 was assessed by quantifying γ-T3 in the collected precipitate of HSD17B4 using anti-flag magnetic beads. Tumor xenografts were established in NSG mice, and tumor growth was monitored.</p><p><strong>Results: </strong>HSD17B4 overexpression significantly promoted HepG2 cell proliferation, which was effectively counteracted by VE or γ-T3 treatment in a dose-dependent manner. VE and γ-T3 did not exert their effects through direct regulation of HSD17B4 expression. Instead, γ-T3 was found to interact with HSD17B4, inhibiting its activity in catalyzing the conversion of estradiol (E2) into estrone. Moreover, γ-T3 treatment led to a reduction in cyclin D1 expression and suppressed key proliferation signaling pathways, such as ERK, MEK, AKT, and STAT3. Additionally, γ-T3 promoted apoptosis in HSD17B4-overexpressing HepG2 cells. In an in vivo model, γ-T3 effectively reduced the growth of HepG2 xenograft tumors.</p><p><strong>Conclusion: </strong>In conclusion, our study demonstrates that γ-T3 exhibits potent anti-proliferative and anti-tumor effects against HepG2 cells overexpressing HSD17B4. These findings highlight the therapeutic potential of γ-T3 in HCC treatment and suggest its role in targeting HSD17B4-associated pathways to inhibit tumor growth and enhance apoptosis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096319171240623091614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Hydroxysteroid 17-beta dehydrogenase 4 (HSD17B4) is involved in the progression of hepatocellular carcinoma (HCC).
Aims: This study aimed to investigate the inhibitory effect of gamma-tocotrienol (γ-T3) on the proliferation and growth of HSD17B4-overexpressing HepG2 cells.
Methods: HepG2 cells were transfected with empty or HSD17B4-overexpressing plasmids, followed by vitamin E (VE) or γ-T3 treatment. MTS assay, Western blotting, qRT-PCR, and flow cytometry were employed to assess cell proliferation, protein expression, mRNA levels, and apoptosis. HSD17B4 interaction with γ-T3 was assessed by quantifying γ-T3 in the collected precipitate of HSD17B4 using anti-flag magnetic beads. Tumor xenografts were established in NSG mice, and tumor growth was monitored.
Results: HSD17B4 overexpression significantly promoted HepG2 cell proliferation, which was effectively counteracted by VE or γ-T3 treatment in a dose-dependent manner. VE and γ-T3 did not exert their effects through direct regulation of HSD17B4 expression. Instead, γ-T3 was found to interact with HSD17B4, inhibiting its activity in catalyzing the conversion of estradiol (E2) into estrone. Moreover, γ-T3 treatment led to a reduction in cyclin D1 expression and suppressed key proliferation signaling pathways, such as ERK, MEK, AKT, and STAT3. Additionally, γ-T3 promoted apoptosis in HSD17B4-overexpressing HepG2 cells. In an in vivo model, γ-T3 effectively reduced the growth of HepG2 xenograft tumors.
Conclusion: In conclusion, our study demonstrates that γ-T3 exhibits potent anti-proliferative and anti-tumor effects against HepG2 cells overexpressing HSD17B4. These findings highlight the therapeutic potential of γ-T3 in HCC treatment and suggest its role in targeting HSD17B4-associated pathways to inhibit tumor growth and enhance apoptosis.