Miguel Ballesteros, Carlos Díaz-Avalos, Omar Hernández, Guillermo Garro
{"title":"A New Method for Low Density Distribution Modeling and Near Threatened Species: The Study Case of Plectrohyla Guatemalensis.","authors":"Miguel Ballesteros, Carlos Díaz-Avalos, Omar Hernández, Guillermo Garro","doi":"10.1007/s11538-024-01315-y","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a model that can be used for the description of the distribution of species when there is scarcity of data, based on our previous work (Ballesteros et al. J Math Biol 85(4):31, 2022). We address challenges in modeling species that are seldom observed in nature, for example species included in The International Union for Conservation of Nature's Red List of Threatened Species (IUCN 2023). We introduce a general method and test it using a case study of a near threatened species of amphibians called Plectrohyla Guatemalensis (see IUCN 2023) in a region of the UNESCO natural reserve \"Tacaná Volcano\", in the border between Mexico and Guatemala. Since threatened species are difficult to find in nature, collected data can be extremely reduced. This produces a mathematical problem in the sense that the usual modeling in terms of Markov random fields representing individuals associated to locations in a grid generates artificial clusters around the observations, which are unreasonable. We propose a different approach in which our random variables describe yearly averages of expectation values of the number of individuals instead of individuals (and they take values on a compact interval). Our approach takes advantage of intuitive insights from environmental properties: in nature individuals are attracted or repulsed by specific features (Ballesteros et al. J Math Biol 85(4):31, 2022). Drawing inspiration from quantum mechanics, we incorporate quantum Hamiltonians into classical statistical mechanics (i.e. Gibbs measures or Markov random fields). The equilibrium between spreading and attractive/repulsive forces governs the behavior of the species, expressed through a global control problem involving an energy operator.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 8","pages":"97"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11538-024-01315-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a model that can be used for the description of the distribution of species when there is scarcity of data, based on our previous work (Ballesteros et al. J Math Biol 85(4):31, 2022). We address challenges in modeling species that are seldom observed in nature, for example species included in The International Union for Conservation of Nature's Red List of Threatened Species (IUCN 2023). We introduce a general method and test it using a case study of a near threatened species of amphibians called Plectrohyla Guatemalensis (see IUCN 2023) in a region of the UNESCO natural reserve "Tacaná Volcano", in the border between Mexico and Guatemala. Since threatened species are difficult to find in nature, collected data can be extremely reduced. This produces a mathematical problem in the sense that the usual modeling in terms of Markov random fields representing individuals associated to locations in a grid generates artificial clusters around the observations, which are unreasonable. We propose a different approach in which our random variables describe yearly averages of expectation values of the number of individuals instead of individuals (and they take values on a compact interval). Our approach takes advantage of intuitive insights from environmental properties: in nature individuals are attracted or repulsed by specific features (Ballesteros et al. J Math Biol 85(4):31, 2022). Drawing inspiration from quantum mechanics, we incorporate quantum Hamiltonians into classical statistical mechanics (i.e. Gibbs measures or Markov random fields). The equilibrium between spreading and attractive/repulsive forces governs the behavior of the species, expressed through a global control problem involving an energy operator.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.