Eduardo Pérez-Pazos, Katilyn V. Beidler, Achala Narayanan, Briana H. Beatty, François Maillard, Alexandra Bancos, Katherine A. Heckman, Peter G. Kennedy
{"title":"Fungi rather than bacteria drive early mass loss from fungal necromass regardless of particle size","authors":"Eduardo Pérez-Pazos, Katilyn V. Beidler, Achala Narayanan, Briana H. Beatty, François Maillard, Alexandra Bancos, Katherine A. Heckman, Peter G. Kennedy","doi":"10.1111/1758-2229.13280","DOIUrl":null,"url":null,"abstract":"<p>Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (>500, 250–500, and <250 μm) of <i>Hyaloscypha bicolor</i> necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal–bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates containing necromass-infused media. Microbial growth was measured after 5 days through quantitative PCR. Regardless of particle size, necromass colonized by fungi had higher mass loss and respiration than both bacteria and uninoculated controls. Fungal colonization increased necromass pH, water content, and altered chemistry, while necromass colonized by bacteria remained mostly unaltered. Bacteria grew significantly more when co-cultured with a fungus, while fungal growth was not significantly affected by bacteria. Collectively, our results suggest that fungi act as key early decomposers of fungal necromass and that bacteria may require the presence of fungi to actively participate in necromass decomposition.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13280","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (>500, 250–500, and <250 μm) of Hyaloscypha bicolor necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal–bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates containing necromass-infused media. Microbial growth was measured after 5 days through quantitative PCR. Regardless of particle size, necromass colonized by fungi had higher mass loss and respiration than both bacteria and uninoculated controls. Fungal colonization increased necromass pH, water content, and altered chemistry, while necromass colonized by bacteria remained mostly unaltered. Bacteria grew significantly more when co-cultured with a fungus, while fungal growth was not significantly affected by bacteria. Collectively, our results suggest that fungi act as key early decomposers of fungal necromass and that bacteria may require the presence of fungi to actively participate in necromass decomposition.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.