Molecule Design for Non-Aqueous Wide-Temperature Electrolytes via the Intelligentized Screening Method

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tian Qin, Dr. Haoyi Yang, Lei Wang, Dr. Weiran Xue, Dr. Nan Yao, Dr. Quan Li, Prof. Xiang Chen, Prof. Xiukang Yang, Dr. Xiqian Yu, Prof. Qiang Zhang, Prof. Hong Li
{"title":"Molecule Design for Non-Aqueous Wide-Temperature Electrolytes via the Intelligentized Screening Method","authors":"Tian Qin,&nbsp;Dr. Haoyi Yang,&nbsp;Lei Wang,&nbsp;Dr. Weiran Xue,&nbsp;Dr. Nan Yao,&nbsp;Dr. Quan Li,&nbsp;Prof. Xiang Chen,&nbsp;Prof. Xiukang Yang,&nbsp;Dr. Xiqian Yu,&nbsp;Prof. Qiang Zhang,&nbsp;Prof. Hong Li","doi":"10.1002/anie.202408902","DOIUrl":null,"url":null,"abstract":"<p>Operating a lithium-ion battery (LIB) in a wide temperature range is essential for ensuring a stable electricity supply amidst fluctuating temperatures caused by climate or terrain changes. Electrolyte plays a pivotal role in determining the temperature durability of batteries. However, specialized electrolytes designed for either low or high temperatures typically possess distinct features. Therefore, wide-temperature electrolytes (WTEs) are necessary as they encompass a combination of diverse properties, which complicates the clear instruction of WTE design. Here we represent an artificial intelligence (Al)-assisted workflow of WTE design through stepwise parameterizations and calculations. Linear mono-nitriles are identified as ideal wide-liquidus-range solvents that can “softly” solvate lithium ions by weak interactions. In addition, the explainable modules revealed the halogenoid similarity of cyanide as fluorine on the electrolyte properties (e.g. boiling point and dielectric constant). With the further introduction of an ether bond, 3-methoxypropionitrile (MPN) has been eventually determined as a main electrolyte solvent, enabling the battery operation from −60 to 120 °C. Particularly, a LiCoO<sub>2</sub>/Li cell using the proposed WTE can realize stable cycling with capacity retention reaching 72.3 % after 50 cycles under a high temperature of 100 °C.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 37","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202408902","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Operating a lithium-ion battery (LIB) in a wide temperature range is essential for ensuring a stable electricity supply amidst fluctuating temperatures caused by climate or terrain changes. Electrolyte plays a pivotal role in determining the temperature durability of batteries. However, specialized electrolytes designed for either low or high temperatures typically possess distinct features. Therefore, wide-temperature electrolytes (WTEs) are necessary as they encompass a combination of diverse properties, which complicates the clear instruction of WTE design. Here we represent an artificial intelligence (Al)-assisted workflow of WTE design through stepwise parameterizations and calculations. Linear mono-nitriles are identified as ideal wide-liquidus-range solvents that can “softly” solvate lithium ions by weak interactions. In addition, the explainable modules revealed the halogenoid similarity of cyanide as fluorine on the electrolyte properties (e.g. boiling point and dielectric constant). With the further introduction of an ether bond, 3-methoxypropionitrile (MPN) has been eventually determined as a main electrolyte solvent, enabling the battery operation from −60 to 120 °C. Particularly, a LiCoO2/Li cell using the proposed WTE can realize stable cycling with capacity retention reaching 72.3 % after 50 cycles under a high temperature of 100 °C.

Abstract Image

通过智能筛选法设计非水宽温电解质的分子。
要在气候或地形变化造成的温度波动中确保稳定的电力供应,在宽温度范围内操作锂离子电池(LIB)至关重要。电解质在决定电池的温度耐久性方面起着关键作用。然而,为低温或高温设计的专用电解质通常具有不同的特性。因此,宽温电解质(WTE)是必要的,因为它们包含多种特性的组合,这使得宽温电解质设计的明确指示变得复杂。在此,我们通过逐步参数化和计算,介绍了一种人工智能(Al)辅助的 WTE 设计工作流程。线性单腈被确定为理想的宽液相溶剂,可通过弱相互作用 "软 "溶解锂离子。此外,可解释模块揭示了氰化物与氟在电解质特性(如沸点和介电常数)上的卤素相似性。随着醚键的进一步引入,3-甲氧基丙腈(MPN)最终被确定为主要的电解质溶剂,使电池可以在 -60 至 120°C 的温度范围内工作。特别是,使用所提出的 WTE 的钴酸锂/锂电池可实现稳定循环,在 100°C 高温下循环 50 次后,容量保持率可达 72.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信