{"title":"Hierarchical porous covalent organic framework nanosheets with adjustable large mesopores","authors":"","doi":"10.1016/j.chempr.2024.05.022","DOIUrl":null,"url":null,"abstract":"<div><div><span>Synchronous manipulation of meso-structure and architecture of covalent organic frameworks<span><span><span> (COFs) is vital for customized applications but still remains challenging. Here, we develop a polymerization-induced co-assembly approach to construct hierarchical porous COF-based </span>nanosheets with adjustable large </span>mesopores (7–40 nm), intrinsic micropores (∼1.2 nm), ultra-thin thickness (∼24 nm), and a crystalline wall. Furthermore, density functional theory calculations and adsorption experiments indicated that the complementarity of the two-dimensional architecture and intrinsic micropores of COFs can effectively confine iodine molecules. Meanwhile, the exposed nitrogen-containing active sites created by the unique mesoporous structure can strongly anchor iodine species, thereby greatly inhibiting their dissolution and shuttling. Therefore, as a cathode for zinc-iodine battery, they delivered an outstanding rate capability (191.2 mAh g</span></span><sup>−1</sup> at 0.5 A g<sup>−1</sup>) and stable long-term cyclability (154.8 mAh g<sup>−1</sup> at 3 A g<sup>−1</sup> after 20,000 cycles). This approach sheds light on the precise fabrication of crystalline porous materials for diverse applications.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3100-3113"},"PeriodicalIF":19.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424002444","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronous manipulation of meso-structure and architecture of covalent organic frameworks (COFs) is vital for customized applications but still remains challenging. Here, we develop a polymerization-induced co-assembly approach to construct hierarchical porous COF-based nanosheets with adjustable large mesopores (7–40 nm), intrinsic micropores (∼1.2 nm), ultra-thin thickness (∼24 nm), and a crystalline wall. Furthermore, density functional theory calculations and adsorption experiments indicated that the complementarity of the two-dimensional architecture and intrinsic micropores of COFs can effectively confine iodine molecules. Meanwhile, the exposed nitrogen-containing active sites created by the unique mesoporous structure can strongly anchor iodine species, thereby greatly inhibiting their dissolution and shuttling. Therefore, as a cathode for zinc-iodine battery, they delivered an outstanding rate capability (191.2 mAh g−1 at 0.5 A g−1) and stable long-term cyclability (154.8 mAh g−1 at 3 A g−1 after 20,000 cycles). This approach sheds light on the precise fabrication of crystalline porous materials for diverse applications.
同步操纵共价有机框架(COFs)的中层结构和体系结构对定制应用至关重要,但仍然具有挑战性。在这里,我们开发了一种聚合诱导的共组装方法,以构建具有可调节的大中孔(7-40 nm)、本征微孔(∼1.2 nm)、超薄厚度(∼24 nm)和晶壁的分层多孔 COF 基纳米片。此外,密度泛函理论计算和吸附实验表明,COFs 的二维结构和固有微孔的互补性可有效禁锢碘分子。同时,独特的介孔结构所形成的外露含氮活性位点可以强力锚定碘物种,从而极大地抑制其溶解和穿梭。因此,作为锌碘电池的阴极,它们具有出色的速率能力(0.5 A g-1 时为 191.2 mAh g-1)和稳定的长期循环能力(20,000 次循环后,3 A g-1 时为 154.8 mAh g-1)。这种方法为精确制造晶体多孔材料的各种应用提供了启示。
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.