Naser Mahfouz, Johannes Mülmenstädt, Susannah Burrows
{"title":"Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2","authors":"Naser Mahfouz, Johannes Mülmenstädt, Susannah Burrows","doi":"10.5194/acp-24-7253-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Cloud albedo susceptibility to droplet number perturbation remains a source of uncertainty in understanding aerosol–cloud interactions and thus both past and present climate states. Through the Energy Exascale Earth System Model (E3SM) v2 experiments, we probe the effects of competing processes on cloud albedo susceptibility of low-lying marine stratocumulus in the northeast Pacific. In present-day conditions, we find that increasing precipitation suppression by aerosols increases cloud albedo susceptibility, whereas increasing cloud sedimentation decreases it. By constructing a hypothetical model configuration exhibiting negative susceptibility under all conditions, we conclude that cloud albedo change due to aerosol perturbation cannot be predicted by present-day co-variabilities in E3SM v2. As such, our null result herein challenges the assumption that present-day climate observations are sufficient to constrain past states, at least in the context of cloud albedo changes to aerosol perturbation.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"13 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-24-7253-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Cloud albedo susceptibility to droplet number perturbation remains a source of uncertainty in understanding aerosol–cloud interactions and thus both past and present climate states. Through the Energy Exascale Earth System Model (E3SM) v2 experiments, we probe the effects of competing processes on cloud albedo susceptibility of low-lying marine stratocumulus in the northeast Pacific. In present-day conditions, we find that increasing precipitation suppression by aerosols increases cloud albedo susceptibility, whereas increasing cloud sedimentation decreases it. By constructing a hypothetical model configuration exhibiting negative susceptibility under all conditions, we conclude that cloud albedo change due to aerosol perturbation cannot be predicted by present-day co-variabilities in E3SM v2. As such, our null result herein challenges the assumption that present-day climate observations are sufficient to constrain past states, at least in the context of cloud albedo changes to aerosol perturbation.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.