{"title":"Dual functional composite solid electrolyte constructed by double-layer sulfonated polyethersulfone (SPES)/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber membrane in high-performance all-solid-state lithium metal batteries","authors":"Qi Yang, Mingmin Liao, Pengfei Ren, Daiqi Li, Nanping Deng, Weimin Kang, Guangming Cai","doi":"10.1016/j.cej.2024.153448","DOIUrl":null,"url":null,"abstract":"The successful implementation of polymer electrolytes in next-generation all-solid-state lithium metal batteries (ASSLMBs) is impeded by their low ion conductivity and weak resistance to lithium dendrites. Herein, a composite solid electrolyte (D-SPES-PH-PEO) with dual reinforcement effects is obtained by combining PEO matrix with a double-layer sulfonated polyethersulfone (SPES)-poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber membrane. The SPES nanofiber membrane acts as a hopping site for ion transport by utilizing the electronegativity and Coulombic force of its own –SOH groups, reducing the energy barrier of the D-SPES-PH-PEO electrolyte. Profiting from the existence of C-F bond, PVDF-HFP nanofiber membrane specializes in generating a protective SEI layer on the lithium anode. Moreover, such a functional membrane not only effectually constructs a three-dimensional ion transport channel by fabricating ion conductive substructures, but also enhances the mechanical strength of the electrolyte. Consequently, the D-SPES-PH-PEO electrolyte is equipped with a high ion conductivity of 7.41 × 10 S cm at 30 °C and high tensile strength of 8 MPa. Furthermore, Li/Li symmetric battery incorporating D-SPES-PH-PEO electrolyte enables a stable cycle for 2500 h at 0.2 mAh cm. The D-SPES-PH-PEO electrolyte represents outstanding compatibility with LiFePO and high-voltage LiNiMnCoO (NMC811) electrodes. Especially, the LiFePO/D-SPES-PH-PEO/Li pouch cell indicates an initial specific capacity of 146.7 mAh g and the NMC811/D-SPES-PH-PEO/Li pouch cell reaches a maximum capacity of 178.5 mAh g. This study emphasizes the importance of double reinforcement of ion conduction and anode protection on solid electrolytes.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"54 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.153448","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The successful implementation of polymer electrolytes in next-generation all-solid-state lithium metal batteries (ASSLMBs) is impeded by their low ion conductivity and weak resistance to lithium dendrites. Herein, a composite solid electrolyte (D-SPES-PH-PEO) with dual reinforcement effects is obtained by combining PEO matrix with a double-layer sulfonated polyethersulfone (SPES)-poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber membrane. The SPES nanofiber membrane acts as a hopping site for ion transport by utilizing the electronegativity and Coulombic force of its own –SOH groups, reducing the energy barrier of the D-SPES-PH-PEO electrolyte. Profiting from the existence of C-F bond, PVDF-HFP nanofiber membrane specializes in generating a protective SEI layer on the lithium anode. Moreover, such a functional membrane not only effectually constructs a three-dimensional ion transport channel by fabricating ion conductive substructures, but also enhances the mechanical strength of the electrolyte. Consequently, the D-SPES-PH-PEO electrolyte is equipped with a high ion conductivity of 7.41 × 10 S cm at 30 °C and high tensile strength of 8 MPa. Furthermore, Li/Li symmetric battery incorporating D-SPES-PH-PEO electrolyte enables a stable cycle for 2500 h at 0.2 mAh cm. The D-SPES-PH-PEO electrolyte represents outstanding compatibility with LiFePO and high-voltage LiNiMnCoO (NMC811) electrodes. Especially, the LiFePO/D-SPES-PH-PEO/Li pouch cell indicates an initial specific capacity of 146.7 mAh g and the NMC811/D-SPES-PH-PEO/Li pouch cell reaches a maximum capacity of 178.5 mAh g. This study emphasizes the importance of double reinforcement of ion conduction and anode protection on solid electrolytes.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.