Ying Bai , Lu Gao , Tao Han , Chao Liang , Jiawei Zhou , Yafeng Liu , Jianqiang Guo , Jing Wu , Dong Hu
{"title":"18β-glycyrrhetinic acid ameliorates bleomycin-induced idiopathic pulmonary fibrosis via inhibiting TGF-β1/JAK2/STAT3 signaling axis","authors":"Ying Bai , Lu Gao , Tao Han , Chao Liang , Jiawei Zhou , Yafeng Liu , Jianqiang Guo , Jing Wu , Dong Hu","doi":"10.1016/j.jsbmb.2024.106560","DOIUrl":null,"url":null,"abstract":"<div><p>Idiopathic pulmonary fibrosis (IPF) is a debilitating and progressive lung disease with an unknown cause that has few treatment options. 18β-Glycyrrhetinic acid (18β-GA) is the main bioactive component in licorice, exhibiting anti-inflammatory and antioxidant effects, while also holding certain application value in the metabolism and regulation of steroids. In this study, we demonstrated that 18β-GA effectively alleviates bleomycin (BLM)-induced IPF by inhibiting the TGF-β1/JAK2/STAT3 signaling axis. <em>In vivo</em> experiments demonstrate that 18β-GA significantly attenuates pulmonary fibrosis progression by reducing lung inflammation, improving lung function, and decreasing collagen deposition. <em>In vitro</em> experiments reveal that 18β-GA inhibits the activation and migration of TGF-β1-induced fibroblasts. Furthermore, it regulates the expression of vimentin, N-cadherin and E-cadherin proteins, thereby inhibiting TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung alveolar epithelial cells. Mechanistically, 18β-GA ameliorates pulmonary fibrosis by modulating the TGF-β1/JAK2/STAT3 signaling pathway in activated fibroblasts. Taken together, our findings demonstrate the potential and underlying mechanisms of 18β-GA in ameliorating IPF, emphasizing its potential as a novel therapeutic drug for the treatment of this devastating disease.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076024001080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and progressive lung disease with an unknown cause that has few treatment options. 18β-Glycyrrhetinic acid (18β-GA) is the main bioactive component in licorice, exhibiting anti-inflammatory and antioxidant effects, while also holding certain application value in the metabolism and regulation of steroids. In this study, we demonstrated that 18β-GA effectively alleviates bleomycin (BLM)-induced IPF by inhibiting the TGF-β1/JAK2/STAT3 signaling axis. In vivo experiments demonstrate that 18β-GA significantly attenuates pulmonary fibrosis progression by reducing lung inflammation, improving lung function, and decreasing collagen deposition. In vitro experiments reveal that 18β-GA inhibits the activation and migration of TGF-β1-induced fibroblasts. Furthermore, it regulates the expression of vimentin, N-cadherin and E-cadherin proteins, thereby inhibiting TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung alveolar epithelial cells. Mechanistically, 18β-GA ameliorates pulmonary fibrosis by modulating the TGF-β1/JAK2/STAT3 signaling pathway in activated fibroblasts. Taken together, our findings demonstrate the potential and underlying mechanisms of 18β-GA in ameliorating IPF, emphasizing its potential as a novel therapeutic drug for the treatment of this devastating disease.