Retrospective analysis of hospitalization costs using two payment systems: the diagnosis related groups (DRG) and the Queralt system, a newly developed case-mix tool for hospitalized patients.
Júlia Folguera, Elisabet Buj, David Monterde, Gerard Carot-Sans, Isaac Cano, Jordi Piera-Jiménez, Miquel Arrufat
{"title":"Retrospective analysis of hospitalization costs using two payment systems: the diagnosis related groups (DRG) and the Queralt system, a newly developed case-mix tool for hospitalized patients.","authors":"Júlia Folguera, Elisabet Buj, David Monterde, Gerard Carot-Sans, Isaac Cano, Jordi Piera-Jiménez, Miquel Arrufat","doi":"10.1186/s13561-024-00522-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hospital services are typically reimbursed using case-mix tools that group patients according to diagnoses and procedures. We recently developed a case-mix tool (i.e., the Queralt system) aimed at supporting clinicians in patient management. In this study, we compared the performance of a broadly used tool (i.e., the APR-DRG) with the Queralt system.</p><p><strong>Methods: </strong>Retrospective analysis of all admissions occurred in any of the eight hospitals of the Catalan Institute of Health (i.e., approximately, 30% of all hospitalizations in Catalonia) during 2019. Costs were retrieved from a full cost accounting. Electronic health records were used to calculate the APR-DRG group and the Queralt index, and its different sub-indices for diagnoses (main diagnosis, comorbidities on admission, andcomplications occurred during hospital stay) and procedures (main and secondary procedures). The primary objective was the predictive capacity of the tools; we also investigated efficiency and within-group homogeneity.</p><p><strong>Results: </strong>The analysis included 166,837 hospitalization episodes, with a mean cost of € 4,935 (median 2,616; interquartile range 1,011-5,543). The components of the Queralt system had higher efficiency (i.e., the percentage of costs and hospitalizations covered by increasing percentages of groups from each case-mix tool) and lower heterogeneity. The logistic model for predicting costs at pre-stablished thresholds (i.e., 80th, 90th, and 95th percentiles) showed better performance for the Queralt system, particularly when combining diagnoses and procedures (DP): the area under the receiver operating characteristics curve for the 80th, 90th, 95th cost percentiles were 0.904, 0.882, and 0.863 for the APR-DRG, and 0.958, 0.945, and 0.928 for the Queralt DP; the corresponding values of area under the precision-recall curve were 0.522, 0.604, and 0.699 for the APR-DRG, and 0.748, 0.7966, and 0.834 for the Queralt DP. Likewise, the linear model for predicting the actual cost fitted better in the case of the Queralt system.</p><p><strong>Conclusions: </strong>The Queralt system, originally developed to predict hospital outcomes, has good performance and efficiency for predicting hospitalization costs.</p>","PeriodicalId":46936,"journal":{"name":"Health Economics Review","volume":"14 1","pages":"45"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Economics Review","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1186/s13561-024-00522-6","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hospital services are typically reimbursed using case-mix tools that group patients according to diagnoses and procedures. We recently developed a case-mix tool (i.e., the Queralt system) aimed at supporting clinicians in patient management. In this study, we compared the performance of a broadly used tool (i.e., the APR-DRG) with the Queralt system.
Methods: Retrospective analysis of all admissions occurred in any of the eight hospitals of the Catalan Institute of Health (i.e., approximately, 30% of all hospitalizations in Catalonia) during 2019. Costs were retrieved from a full cost accounting. Electronic health records were used to calculate the APR-DRG group and the Queralt index, and its different sub-indices for diagnoses (main diagnosis, comorbidities on admission, andcomplications occurred during hospital stay) and procedures (main and secondary procedures). The primary objective was the predictive capacity of the tools; we also investigated efficiency and within-group homogeneity.
Results: The analysis included 166,837 hospitalization episodes, with a mean cost of € 4,935 (median 2,616; interquartile range 1,011-5,543). The components of the Queralt system had higher efficiency (i.e., the percentage of costs and hospitalizations covered by increasing percentages of groups from each case-mix tool) and lower heterogeneity. The logistic model for predicting costs at pre-stablished thresholds (i.e., 80th, 90th, and 95th percentiles) showed better performance for the Queralt system, particularly when combining diagnoses and procedures (DP): the area under the receiver operating characteristics curve for the 80th, 90th, 95th cost percentiles were 0.904, 0.882, and 0.863 for the APR-DRG, and 0.958, 0.945, and 0.928 for the Queralt DP; the corresponding values of area under the precision-recall curve were 0.522, 0.604, and 0.699 for the APR-DRG, and 0.748, 0.7966, and 0.834 for the Queralt DP. Likewise, the linear model for predicting the actual cost fitted better in the case of the Queralt system.
Conclusions: The Queralt system, originally developed to predict hospital outcomes, has good performance and efficiency for predicting hospitalization costs.
期刊介绍:
Health Economics Review is an international high-quality journal covering all fields of Health Economics. A broad range of theoretical contributions, empirical studies and analyses of health policy with a health economic focus will be considered for publication. Its scope includes macro- and microeconomics of health care financing, health insurance and reimbursement as well as health economic evaluation, health services research and health policy analysis. Further research topics are the individual and institutional aspects of health care management and the growing importance of health care in developing countries.