A Comprehensive Review of Nanomaterials as Potential Weapons against Multidrug-Resistant Staphylococcus aureus.

Q2 Pharmacology, Toxicology and Pharmaceutics
Bhargav Devliya, Bimalkumar Patel, Shreya J Chauhan, Hitesh D Patel
{"title":"A Comprehensive Review of Nanomaterials as Potential Weapons against Multidrug-Resistant Staphylococcus aureus.","authors":"Bhargav Devliya, Bimalkumar Patel, Shreya J Chauhan, Hitesh D Patel","doi":"10.2174/0122117385314186240522100239","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug-resistant Staphylococcus aureus is a serious public health problem with high fatality rates and difficult treatment. Conventional antimicrobials are limited in their effectiveness against MRSA due to developing resistance mechanisms and protective biofilms. Nanomaterials present a potential alternative since they offer targeted drug delivery and synergetic effects of nanoconjugates, eradicate biofilms, and use photothermal and photodynamic therapies. Furthermore, the discovery of nanovaccines holds the potential for enhancing immune responses against multidrugresistant S. aureus. Nanoparticles show considerable promise in the battle against multidrugresistant S. aureus, but significant obstacles remain, including determining their possible toxicity, scalability, and cost-effectiveness for widespread clinical application. However, by overcoming these barriers, nanomaterial-based techniques provide a viable route for tackling multidrug resistance in S. aureus, opening the path for a future in which successful therapies are within reach.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385314186240522100239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Multidrug-resistant Staphylococcus aureus is a serious public health problem with high fatality rates and difficult treatment. Conventional antimicrobials are limited in their effectiveness against MRSA due to developing resistance mechanisms and protective biofilms. Nanomaterials present a potential alternative since they offer targeted drug delivery and synergetic effects of nanoconjugates, eradicate biofilms, and use photothermal and photodynamic therapies. Furthermore, the discovery of nanovaccines holds the potential for enhancing immune responses against multidrugresistant S. aureus. Nanoparticles show considerable promise in the battle against multidrugresistant S. aureus, but significant obstacles remain, including determining their possible toxicity, scalability, and cost-effectiveness for widespread clinical application. However, by overcoming these barriers, nanomaterial-based techniques provide a viable route for tackling multidrug resistance in S. aureus, opening the path for a future in which successful therapies are within reach.

纳米材料作为抗耐多药金黄色葡萄球菌潜在武器的全面综述。
耐多药金黄色葡萄球菌是一个严重的公共卫生问题,致死率高且治疗困难。由于耐药性机制和保护性生物膜的形成,传统抗菌药对 MRSA 的疗效有限。纳米材料是一种潜在的替代品,因为它们能提供靶向给药和纳米共轭物的协同效应,消除生物膜,并使用光热和光动力疗法。此外,纳米疫苗的发现有可能增强针对耐多药金黄色葡萄球菌的免疫反应。纳米粒子在对抗耐多药金黄色葡萄球菌的战斗中展现出了巨大的前景,但仍存在重大障碍,包括确定其可能的毒性、可扩展性和广泛临床应用的成本效益。然而,通过克服这些障碍,基于纳米材料的技术为解决金黄色葡萄球菌的多药耐药性问题提供了一条可行的途径,为未来成功治疗开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信