Exploring mycorrhizal diversity in sympatric mycoheterotrophic plants: a comparative study of Monotropastrum humile var. humile and M. humile var. glaberrimum.

IF 3.3 2区 生物学 Q2 MYCOLOGY
Mycorrhiza Pub Date : 2024-07-01 Epub Date: 2024-06-25 DOI:10.1007/s00572-024-01158-4
Ren-Cheng Liu, Wan-Rou Lin, Pi-Han Wang
{"title":"Exploring mycorrhizal diversity in sympatric mycoheterotrophic plants: a comparative study of Monotropastrum humile var. humile and M. humile var. glaberrimum.","authors":"Ren-Cheng Liu, Wan-Rou Lin, Pi-Han Wang","doi":"10.1007/s00572-024-01158-4","DOIUrl":null,"url":null,"abstract":"<p><p>Mycoheterotrophic plants (MHPs) rely on their mycorrhizal fungus for carbon and nutrient supply, thus a shift in mycobionts may play a crucial role in speciation. This study aims to explore the mycorrhizal diversity of two closely related and sympatric fully MHPs, Monotropastrum humile var. humile (Mhh) and M. humile var. glaberrimum (Mhg), and determine their mycorrhizal associations. A total of 1,108,710 and 1,119,071 ectomycorrhizal fungal reads were obtained from 31 Mhh and 31 Mhg, and these were finally assigned to 227 and 202 operational taxonomic units, respectively. Results show that sympatric Mhh and Mhg are predominantly associated with different fungal genera in Russulaceae. Mhh is consistently associated with members of Russula, whereas Mhg is associated with members of Lactarius. Associating with different mycobionts and limited sharing of fungal partners might reduce the competition and contribute to their coexistence. The ectomycorrhizal fungal communities are significantly different among the five forests in both Mhh and Mhg. The distinct mycorrhizal specificity between Mhh and Mhg suggests the possibility of different mycobionts triggered ecological speciation between sympatric species.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01158-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycoheterotrophic plants (MHPs) rely on their mycorrhizal fungus for carbon and nutrient supply, thus a shift in mycobionts may play a crucial role in speciation. This study aims to explore the mycorrhizal diversity of two closely related and sympatric fully MHPs, Monotropastrum humile var. humile (Mhh) and M. humile var. glaberrimum (Mhg), and determine their mycorrhizal associations. A total of 1,108,710 and 1,119,071 ectomycorrhizal fungal reads were obtained from 31 Mhh and 31 Mhg, and these were finally assigned to 227 and 202 operational taxonomic units, respectively. Results show that sympatric Mhh and Mhg are predominantly associated with different fungal genera in Russulaceae. Mhh is consistently associated with members of Russula, whereas Mhg is associated with members of Lactarius. Associating with different mycobionts and limited sharing of fungal partners might reduce the competition and contribute to their coexistence. The ectomycorrhizal fungal communities are significantly different among the five forests in both Mhh and Mhg. The distinct mycorrhizal specificity between Mhh and Mhg suggests the possibility of different mycobionts triggered ecological speciation between sympatric species.

Abstract Image

探索共生菌根植物的菌根多样性:Monotropastrum humile var.
菌根营养型植物(MHPs)依赖其菌根真菌提供碳和养分,因此菌根的变化可能在物种分化中起到关键作用。本研究旨在探索两种亲缘关系密切且同域的完全MHP--Monotropastrum humile var.humile(Mhh)和M. humile var.从 31 个 Mhh 和 31 个 Mhg 中分别获得了 1,108,710 和 1,119,071 个外生菌根真菌读数,并最终将这些读数分别归入 227 和 202 个操作分类单元。结果表明,同域的 Mhh 和 Mhg 主要与 Russulaceae 的不同真菌属相关。Mhh 始终与 Russula 属的成员有联系,而 Mhg 则与 Lactarius 属的成员有联系。与不同的分生孢子结合和有限的共享真菌伙伴可能会减少竞争,有助于它们的共存。在 Mhh 和 Mhg 的五片森林中,外生菌根真菌群落有显著差异。Mhh和Mhg之间不同的菌根特异性表明,不同的菌根菌引发了同域物种之间的生态分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信